Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2025

Parametric models for distributional data

Autores
Brito, P; Silva, APD;

Publicação
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION

Abstract
We present parametric probabilistic models for numerical distributional variables. The proposed models are based on the representation of each distribution by a location measure and inter-quantile ranges, for given quantiles, thereby characterizing the underlying empirical distributions in a flexible way. Multivariate Normal distributions are assumed for the whole set of indicators, considering alternative structures of the variance-covariance matrix. For all cases, maximum likelihood estimators of the corresponding parameters are derived. This modelling allows for hypothesis testing and multivariate parametric analysis. The proposed framework is applied to Analysis of Variance and parametric Discriminant Analysis of distributional data. A simulation study examines the performance of the proposed models in classification problems under different data conditions. Applications to Internet traffic data and Portuguese official data illustrate the relevance of the proposed approach.

2025

Does Every Computer Scientist Need to Know Formal Methods?

Autores
Broy, M; Brucker, AD; Fantechi, A; Gleirscher, M; Havelund, K; Kuppe, MA; Mendes, A; Platzer, A; Ringert, JO; Sullivan, A;

Publicação
FORMAL ASPECTS OF COMPUTING

Abstract
We focus on the integration of Formal Methods as mandatory theme in any Computer Science University curriculum. In particular, when considering the ACM Curriculum for Computer Science, the inclusion of Formal Methods as a mandatory Knowledge Area needs arguing for why and how does every computer science graduate benefit from such knowledge. We do not agree with the sentence While there is a belief that formal methods are important and they are growing in importance, we cannot state that every computer science graduate will need to use formal methods in their career. We argue that formal methods are and have to be an integral part of every computer science curriculum. Just as not all graduates will need to know how to work with databases either, it is still important for students to have a basic understanding of how data is stored and managed efficiently. The same way, students have to understand why and how formal methods work, what their formal background is, and how they are justified. No engineer should be ignorant of the foundations of their subject and the formal methods based on these. In this article, we aim at highlighting why every computer scientist needs to be familiar with formal methods. We argue that education in formal methods plays a key role by shaping students' programming mindset, fostering an appreciation for underlying principles, and encouraging the practice of thoughtful program

2025

Enhancing Recruitment with LLMs and Chatbots

Autores
Novais, L; Rocio, V; Morais, J;

Publicação
Lecture Notes in Networks and Systems

Abstract
Traditional approaches in the competitive recruitment landscape frequently encounter difficulties in effectively identifying exceptional applicants, resulting in delays, increased expenses, and biases. This study proposes the utilisation of contemporary technologies such as Large Language Models (LLMs) and chatbots to automate the process of resume screening, thereby diminishing prejudices and enhancing communication between recruiters and candidates. Algorithms based on LLM can greatly transform the process of screening by improving both its speed and accuracy. By integrating chatbots, it becomes possible to have personalised interactions with candidates and streamline the process of scheduling interviews. This strategy accelerates the hiring process while maintaining principles of justice and ethics. Its objective is to improve algorithms and procedures to meet changing requirements and enhance the competitive advantage of talent acquisition within organisations. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

Comparative analysis of EU-based cybersecurity skills frameworks

Autores
Almeida, F;

Publicação
Computers & Security

Abstract

2025

Collaborative Fault Tolerance for Cyber-Physical Systems: The Diagnosis Stage

Autores
Piardi, L; Costa, P; De Oliveira, AS; Leitão, P;

Publicação
IEEE Access

Abstract
The reliability and robustness of cyber-physical systems (CPS) are critical aspects of the current industrial landscape. The high level of autonomous and distributed components associated with a large number of devices makes CPS prone to faults. Despite their importance and benefits, traditional fault tolerance methodologies, namely local and/or centralized, often overlook the potential benefits of collaboration between cyber-physical components. This paper introduces a collaborative fault diagnosis methodology for CPS, integrating self-fault diagnosis capabilities in agents and leveraging collaborative behavior to enhance fault diagnosis. The contribution of this paper relay in propose a methodology for fault diagnosis for CPS, based on multi-agent system (MAS) technology as a backbone of infra-structure, highlighting the components, agent behavior, functionalities, and interaction protocols, to explore the benefits of communication and collaboration between agents. The proposed methodology enhance the accuracy of fault diagnosis when compared with local approach. A case study was conducted in a laboratory-scale warehouse, focusing on diagnosing drift, bias, and precision faults in temperature and humidity sensors. Experimental results reveal that the collaborative methodology significantly outperforms the local approach in fault diagnosis, as evidenced by performance improvements in diagnosis classification. The statistical significance of these results was validated using the Wilcoxon signed-ranks test for paired samples. © 2013 IEEE.

2025

Automated optical system for quality inspection on reflective parts

Autores
Nascimento, R; Rocha, CD; Gonzalez, DG; Silva, T; Moreira, R; Silva, MF; Filipe, V; Rocha, LF;

Publicação
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

Abstract
The growing demand for high-quality components in various industries, particularly in the automotive sector, requires advanced and reliable inspection methods to maintain competitive standards and support innovation. Manual quality inspection tasks are often inefficient and prone to errors due to their repetitive nature and subjectivity, which can lead to attention lapses and operator fatigue. The inspection of reflective aluminum parts presents additional challenges, as uncontrolled reflections and glare can obscure defects and reduce the reliability of conventional vision-based methods. Addressing these challenges requires optimized illumination strategies and robust image processing techniques to enhance defect visibility. This work presents the development of an automated optical inspection system for reflective parts, focusing on components made of high-pressure diecast aluminum used in the automotive industry. The reflective nature of these parts introduces challenges for defect detection, requiring optimized illumination and imaging methods. The system applies deep learning algorithms and uses dome light to achieve uniform illumination, enabling the detection of small defects on reflective surfaces. A collaborative robotic manipulator equipped with a gripper handles the parts during inspection, ensuring precise positioning and repeatability, which improves both the efficiency and effectiveness of the inspection process. A flow execution-based software platform integrates all system components, enabling seamless operation. The system was evaluated with Schmidt Light Metal Group using three custom datasets to detect surface porosities and inner wall defects post-machining. For surface porosity detection, YOLOv8-Mosaic, trained with cropped images to reduce background noise, achieved a recall value of 84.71% and was selected for implementation. Additionally, an endoscopic camera was used in a preliminary study to detect defects within the inner walls of holes. The industrial trials produced promising results, demonstrating the feasibility of implementing a vision-based automated inspection system in various industries. The system improves inspection accuracy and efficiency while reducing material waste and operator fatigue.

  • 6
  • 4039