2026
Autores
Guerreiro, MS; Dinis, MAP; Sucena, S; Silva, I; Pereira, M; Ferreira, D; Moreira, RS;
Publicação
CITIES
Abstract
The concept of the 15-Minute City aims to enhance urban accessibility by ensuring that essential services are within a short walking distance. This study evaluates the accessibility of Porto, Portugal, particularly for the elderly, by assessing urban density, permeability, and walkability, with a specific focus on crossings and ramps. A five-step methodology was employed, including spatial analysis using QGIS and Place Syntax Tool, proximity assessments, and an in-situ survey of crossings and ramps in the CHP. The results indicate that while the city of Porto offers a dense and walkable urban environment, significant accessibility challenges remain due to inadequate ramp distribution. The data collection identified 80 crossings, of which only 60 were listed in OpenStreetMap, highlighting data inconsistencies. Additionally, 18 crossings lacked curb ramps, posing mobility barriers for elderly residents. These findings highlight the need of infrastructure improvements to support inclusive urban mobility. The study also proposes an automated method to enhance ramp data collection for broader applications. Addressing these gaps is crucial for achieving the equity and sustainability goals of the 15-Minute City model, ensuring that aging populations can navigate urban spaces safely and efficiently.
2026
Autores
Costa, L; Barbosa, S; Cunha, J;
Publicação
Future Gener. Comput. Syst.
Abstract
In recent years, the research community, but also the general public, has raised serious questions about the reproducibility and replicability of scientific work. Since many studies include some kind of computational work, these issues are also a technological challenge, not only in computer science, but also in most research domains. Computational replicability and reproducibility are not easy to achieve due to the variety of computational environments that can be used. Indeed, it is challenging to recreate the same environment via the same frameworks, code, programming languages, dependencies, and so on. We propose a framework, known as SciRep, that supports the configuration, execution, and packaging of computational experiments by defining their code, data, programming languages, dependencies, databases, and commands to be executed. After the initial configuration, the experiments can be executed any number of times, always producing exactly the same results. Our approach allows the creation of a reproducibility package for experiments from multiple scientific fields, from medicine to computer science, which can be re-executed on any computer. The produced package acts as a capsule, holding absolutely everything necessary to re-execute the experiment. To evaluate our framework, we compare it with three state-of-the-art tools and use it to reproduce 18 experiments extracted from published scientific articles. With our approach, we were able to execute 16 (89%) of those experiments, while the others reached only 61%, thus showing that our approach is effective. Moreover, all the experiments that were executed produced the results presented in the original publication. Thus, SciRep was able to reproduce 100% of the experiments it could run. © 2025 The Authors
2026
Autores
Beck, D; Morgado, L; O'Shea, P;
Publicação
IMMERSIVE LEARNING RESEARCH NETWORK, ILRN 2025
Abstract
Since the publication of the 2020 paper, Finding the Gaps About Uses of Immersive Learning Environments: A Survey of Surveys, the landscape of immersive learning environments (ILEs) has continued to evolve rapidly. This update aims to revisit the gaps identified in that previous research and explore emerging trends. We conducted an extensive review of new surveys published after that paper's cut date. Our findings reveal a significant amount of new published reviews (n = 64), more than doubling the original corpus (n = 47). The results highlighted novel themes of usage of immersive environments, helping bridge some 2020 research gaps. This paper discusses those developments and presents a consolidated perspective on the uses of immersive learning environments.
2026
Autores
Lourenço, CB; Pinto, JS;
Publicação
SCIENCE OF COMPUTER PROGRAMMING
Abstract
In this paper, we introduce a novel approach for rigorously verifying safety properties of state machine specifications. Our method leverages an auto-active verifier and centers around the use of action functions annotated with contracts. These contracts facilitate inductive invariant checking, ensuring correctness during system execution. Our approach is further supported by the Why3-do library, which extends the Why3 tool's capabilities to verify concurrent and distributed algorithms using state machines. Two distinctive features of Why3-do are: (i) it supports specification refinement through refinement mappings, enabling hierarchical reasoning about distributed algorithms; and (ii) it can be easily extended to make verifying specific classes of systems more convenient. In particular, the library contains models allowing for message-passing algorithms to be described with programmed handlers, assuming different network semantics. A gallery of examples, all verified with Why3 using SMT solvers as proof tools, is also described in the paper. It contains several auto-actively verified concurrent and distributed algorithms, including the Paxos consensus algorithm.
2026
Autores
Fernandes, RF; Oliveira, HS; Ribeiro, PP; Oliveira, HP;
Publicação
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2025, PT II
Abstract
Medical image captioning is an essential tool to produce descriptive text reports of medical images. One of the central problems of medical image captioning is their poor domain description generation because large pre-trained language models are primarily trained in non-medical text domains with different semantics of medical text. To overcome this limitation, we explore improvements in contrastive learning for X-ray images complemented with soft prompt engineering for medical image captioning and conditional text decoding for caption generation. The main objective is to develop a softprompt model to improve the accuracy and clinical relevance of the automatically generated captions while guaranteeing their complete linguistic accuracy without corrupting the models' performance. Experiments on the MIMIC-CXR and ROCO datasets showed that the inclusion of tailored soft-prompts improved accuracy and efficiency, while ensuring a more cohesive medical context for captions, aiding medical diagnosis and encouraging more accurate reporting.
2026
Autores
Coelho A.; Silva R.; Soares F.J.; Gouveia C.; Mendes A.; Silva J.V.; Freitas J.P.;
Publicação
Lecture Notes in Energy
Abstract
This chapter explores the potential of thermal energy storage (TES) systems towards the decarbonization of industry and energy networks, considering its coordinated management with electrochemical energy storage and renewable energy sources (RES). It covers various TES technologies, including sensible heat storage (SHS), latent heat storage (LHS), and thermochemical energy storage (TCS), each offering unique benefits and facing specific challenges. The integration of TES into industrial parks is highlighted, showing how these systems can optimize energy manage-ment and reduce reliance on external sources. A district heating use case also demonstrates the economic and environmental advantages of a multi-energy management strategy over single-energy approaches. Overall, TES technologies are presented as a promising pathway to greater energy effi-ciency and sustainability in industrial processes.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.