2024
Autores
Spano, LD; Campos, JC; Dittmar, A; Forbrig, P;
Publicação
DESIGN FOR EQUALITY AND JUSTICE, INTERACT 2023, PT I
Abstract
This paper leverages the outcomes of the first workshop on HCI Engineering Education [4] to create an online repository where the community can share content relevant to HCI. The repository takes advantage of the functionalities of the Git file versioning system to support presenting and adding content. The paper describes the structure of the repository and the process for adding new content. In addition, we propose an adaptation of the framework for presenting teaching samples, supporting more flexibility in the application of educational material for different teaching objectives. The new presentation format starts with describing a design problem and emphasises the students' applied understanding of conceptual and theoretical knowledge. The presentation format is demonstrated and discussed by the example of an end-user design tool for mobile data collection.
2024
Autores
Yalçinkaya, B; Araújo, A; Couceiro, MS; Soares, S; Valente, A;
Publicação
European Robotics Forum 2024 - 15th ERF, Volume 2, Rimini, Italy, 13-15 March 2024.
Abstract
2024
Autores
Diniz, JDN; de Paiva, AC; Braz, G Jr; de Almeida, JDS; Silva, AC; Cunha, AMTD; Cunha, SCAPD;
Publicação
APPLIED SCIENCES-BASEL
Abstract
Pathologies in concrete structures can be visually evidenced on the concrete surface, such as by fissures or cracks, fragmentation of part of the concrete, concrete efflorescence, corrosion stains on the concrete surface, or exposed steel bars, the latter two occurring in reinforced concrete. Therefore, these pathologies can be analyzed via the images of concrete structures. This article proposes a methodology for visually inspecting concrete structures using deep neural networks. This method makes it possible to speed up the detection task and increase its effectiveness by saving time in preparing the identifications to be analyzed and eliminating or reducing errors, such as those resulting from human errors caused by the execution of tedious, repetitive analysis tasks. The methodology was tested to analyze its accuracy. The neural network architecture used for detection was YOLO, versions 4 and 8, which was tested to analyze the gain with migration to a more recent version. The dataset for classification was Ozgnel, which was trained with YOLO version 8, and the detection dataset was CODEBRIM. The use of a dedicated classification dataset allows for a better-trained network for this function and results in the elimination of false positives in the detection stage. The classification achieved 99.65% accuracy.
2024
Autores
Pereira, I; Madureira, A; Bettencourt, N; Coelho, D; Rebelo, MA; Araújo, C; de Oliveira, DA;
Publicação
INFORMATICS-BASEL
Abstract
The exponential growth of data in the digital age has led to a significant demand for innovative approaches to assess data in a manner that is both effective and efficient. Machine Learning as a Service (MLaaS) is a category of services that offers considerable potential for organisations to extract valuable insights from their data while reducing the requirement for heavy technical expertise. This article explores the use of MLaaS within the realm of marketing applications. In this study, we provide a comprehensive analysis of MLaaS implementations and their benefits within the domain of marketing. Furthermore, we present a platform that possesses the capability to be customised and expanded to address marketing's unique requirements. Three modules are introduced: Churn Prediction, One-2-One Product Recommendation, and Send Frequency Prediction. When applied to marketing, the proposed MLaaS system exhibits considerable promise for use in applications such as automated detection of client churn prior to its occurrence, individualised product recommendations, and send time optimisation. Our study revealed that AI-driven campaigns can improve both the Open Rate and Click Rate. This approach has the potential to enhance customer engagement and retention for businesses while enabling well-informed decisions by leveraging insights derived from consumer data. This work contributes to the existing body of research on MLaaS in marketing and offers practical insights for businesses seeking to utilise this approach to enhance their competitive edge in the contemporary data-oriented marketplace.
2024
Autores
Homayouni, SM; de Sousa, JP; Marques, CM;
Publicação
WMU JOURNAL OF MARITIME AFFAIRS
Abstract
This paper examines the role of digital twins (DTs) in promoting sustainability within seaport operations and logistics. DTs have emerged as promising tools for enhancing seaport performance. Despite the recognized potential of DTs in seaports, there is a paucity of research on their practical implementation and impact on seaport sustainability. Through a systematic literature review, this study seeks to elucidate how DTs contribute to the sustainability of seaports and to identify future research and practical applications. We reviewed and categorized 68 conceptual and practical digital applications into ten core areas that effectively support economic, social, and environmental objectives in seaports. Furthermore, this paper proposes five preliminary potential applications for DTs where practical implementations are currently lacking. The primary findings indicate that DTs can enhance seaport sustainability by facilitating real-time monitoring and decision-making, improving safety and security, optimizing resource utilization, enhancing collaboration and communication, and supporting the development of the seaport ecosystem. Additionally, this study addresses the challenges associated with DT implementation, including high costs, conflicting stakeholder priorities, data quality and availability, and model validation. The paper concludes with a discussion of the implications for seaport managers and policymakers.
2024
Autores
Navarro, LC; Azevedo, A; Matos, A; Rocha, A; Ozorio, R;
Publicação
AQUACULTURE REPORTS
Abstract
Marine aquaculture, particularly in the Mediterranean region, faces the challenge of minimizing growth dispersion, which has a direct impact on the production cycle, market value and sustainability of the sector. Conventional grading methods are resource intensive and potentially detrimental to fish health. The current study presented an innovative approach in predicting fish weight dispersion in European seabass (Dicentrarchus labrax) aquaculture. Seabass is one of the two major fish species cultivated on the Mediterranean coast, with a fattening cycle of 18-24 months. During this period, several grading operations are carried out to minimize growth dispersion. The intricate feed-fish-water system, characterized by complex interactions among feeding regimes, fish behavior, individual metabolism and environmental factors, is the focus of the study. The comprehensive, five-step methodology addresses this complexity. The process begins with a Discrete Event System (DES) model that simulates the feed-fish-water dynamics, taking into account individual fish metabolism. This is followed by the development of a surrogate machine learning (ML) regressor model, which is trained on DES simulation data to efficiently predict growth distribution. The model is then calibrated and customized for specific fish stocks and production tanks. The preliminary results from 21 tanks in two trials with European seabass (D. labrax) showed the effectiveness of the method. The results from the simulation models achieved a R2 of 99.9 % and a Mean Absolute Percentage Error (MAPE) of 1.1 % for the prediction of mean final weight and a R2 of 90.3 % with a MAPE of 8.1 % for the standard deviation of final weight. In summary, this study represents a significant advance in the planning and management of seabass aquaculture. Given the lack of effective prediction tools in the aquaculture industry, the proposed methodology has the potential to reduce risks and inefficiencies, thus possibly optimizing aquaculture practices by increasing sustainability and profitability.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.