Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2024

Contrastive text summarization: a survey

Autores
Ströhle, T; Campos, R; Jatowt, A;

Publicação
Int. J. Data Sci. Anal.

Abstract

2024

Towards truly sustainable IoT systems: the SUPERIOT project

Autores
Katz, M; Paso, T; Mikhaylov, K; Pessoa, L; Fontes, H; Hakola, L; Leppaeniemi, J; Carlos, E; Dolmans, G; Rufo, J; Drzewiecki, M; Sallouha, H; Napier, B; Branquinho, A; Eder, K;

Publicação
JOURNAL OF PHYSICS-PHOTONICS

Abstract
This paper provides an overview of the SUPERIOT project, an EU SNS JU (Smart Networks and Services Joint Undertaking) initiative focused on developing truly sustainable IoT systems. The SUPERIOT concept is based on a unique holistic approach to sustainability, proactively developing sustainable solutions considering the design, implementation, usage and disposal/reuse stages. The concept exploits radio and optical technologies to provide dual-mode wireless connectivity and dual-mode energy harvesting as well as dual-mode IoT node positioning. The implementation of the IoT nodes or devices will maximize the use of sustainable printed electronics technologies, including printed components, conductive inks and substrates. The paper describes the SUPERIOT concept, covering the key technical approaches to be used, promising scenarios and applications, project goals and demonstrators which will be developed to the proof-of-concept stage. In addition, the paper briefly discusses some important visions on how this technology may be further developed in the future.

2024

Modal Pitch Space: A Computational Model of Melodic Pitch Attraction in Folk Music

Autores
Bernardes, G; Carvalho, N;

Publicação
MATHEMATICS AND COMPUTATION IN MUSIC, MCM 2024

Abstract
We introduce a computational model that quantifies melodic pitch attraction in diatonic modal folk music, extending Lerdahl's Tonal Pitch Space. The model incorporates four melodic pitch indicators: vertical embedding distance, horizontal step distance, semitone interval distance, and relative stability. Its scalability is exclusively achieved through prior mode and tonic information, eliminating the need in existing models for additional chordal context. Noteworthy contributions encompass the incorporation of empirically-driven folk music knowledge and the calculation of indicator weights. Empirical evaluation, spanning Dutch, Irish, and Spanish folk traditions across Ionian, Dorian, Mixolydian, and Aeolian modes, uncovers a robust linear relationship between melodic pitch transitions and the pitch attraction model infused with empirically-derived knowledge. Indicator weights demonstrate cross-tradition generalizability, highlighting the significance of vertical embedding distance and relative stability. In contrast, semitone and horizontal step distances assume residual and null functions, respectively.

2024

Space Imaging Point Source Detection and Characterization

Autores
Ribeiro, FSF; Garcia, PJV; Silva, M; Cardoso, JS;

Publicação
IEEE ACCESS

Abstract
Point source detection algorithms play a pivotal role across diverse applications, influencing fields such as astronomy, biomedical imaging, environmental monitoring, and beyond. This article reviews the algorithms used for space imaging applications from ground and space telescopes. The main difficulties in detection arise from the incomplete knowledge of the impulse function of the imaging system, which depends on the aperture, atmospheric turbulence (for ground-based telescopes), and other factors, some of which are time-dependent. Incomplete knowledge of the impulse function decreases the effectiveness of the algorithms. In recent years, deep learning techniques have been employed to mitigate this problem and have the potential to outperform more traditional approaches. The success of deep learning techniques in object detection has been observed in many fields, and recent developments can further improve the accuracy. However, deep learning methods are still in the early stages of adoption and are used less frequently than traditional approaches. In this review, we discuss the main challenges of point source detection, as well as the latest developments, covering both traditional and current deep learning methods. In addition, we present a comparison between the two approaches to better demonstrate the advantages of each methodology.

2024

A security-aware dynamic hosting capacity approach to enhance the integration of renewable generation in distribution networks

Autores
Herding, L; Carvalho, L; Cossent, R; Rivier, M;

Publicação
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
Hosting capacity (HC) describes the electricity network's ability to accommodate distributed generation (DG) without deteriorating electrical performance indicators. Distribution system operators typically express their networks' HC as a single threshold, called static hosting capacity (SHC). SHC is determined via conservative regulatory criteria, increasing connection costs and time. This paper explores the potential for additional energy injection into the network via dynamic hosting capacity (DHC). A network node's DHC is derived from the hourly operation of the network, accounting for the time variability of existing distributed generation (DG) output and demand. The methodology considers the network assets' N-1 contingencies and their probabilities, defining the security-aware DHC (SDHC). The SDHC definition is technologically neutral. Through a case study of a radial medium voltage distribution network, the paper highlights the significant limitations of SHC due to conservative calculation criteria mandated by regulators. Annual injectable energy is increased by 62% to 76% when comparing DHC to SHC. Variations between average DHC and SDHC are below 0.01% due to low N-1 probabilities. This finding points out the potential of dynamic hosting capacity definitions, allowing more efficient use of the existing network and facilitating the integration of new DG capacity with reduced connection costs and time.

2024

Evaluation of Different Filtering Methods Devoted to Magnetometer Data Denoising

Autores
Pereira, T; Santos, V; Gameiro, T; Viegas, C; Ferreira, N;

Publicação
ELECTRONICS

Abstract
In this article, we describe a performance comparison conducted between several digital filters intended to mitigate the intrinsic noise observed in magnetometers. The considered filters were used to smooth the control signals derived from the magnetometers, which were present in an autonomous forestry machine. Three moving average FIR filters, based on rectangular Bartlett and Hanning windows, and an exponential moving average IIR filter were selected and analyzed. The trade-off between the noise reduction factor and the latency of the proposed filters was also investigated, taking into account the crucial importance of latency on real-time applications and control algorithms. Thus, a maximum latency value was used in the filter design procedure instead of the usual filter order. The experimental results and simulations show that the linear decay moving average (LDMA) and the raised cosine moving average (RCMA) filters outperformed the simple moving average (SMA) and the exponential moving average (EMA) in terms of noise reduction, for a fixed latency value, allowing a more accurate heading angle calculation and position control mechanism for autonomous and unmanned ground vehicles (UGVs).

  • 68
  • 4030