Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2025

A Systematic Review of Security Communication Strategies: Guidelines and Open Challenges

Autores
Carreira, C; Mendes, A; Ferreira, JF; Christin, N;

Publicação
CoRR

Abstract

2025

Context-aware Rate Adaptation for Predictive Flying Networks using Contextual Bandits

Autores
Queirós, R; Kaneko, M; Fontes, H; Campos, R;

Publicação
CoRR

Abstract

2025

A Hybrid Deep Learning Approach for Enhanced Classification of Lung Pathologies From Chest X-Ray

Autores
Sajed, S; Rostami, H; Garcia, JE; Keshavarz, A; Teixeira, A;

Publicação
INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY

Abstract
The increasing global burden of lung diseases necessitates the development of improved diagnostic tools. According to the WHO, hundreds of millions of individuals worldwide are currently affected by various forms of lung disease. The rapid advancement of artificial neural networks has revolutionized lung disease diagnosis, enabling the development of highly effective detection and classification systems. This article presents dual channel neural networks in image feature extraction based on classical CNN and vision transformers for multi-label lung disease diagnosis. Two separate subnetworks are employed to capture both global and local feature representations, thereby facilitating the extraction of more informative and discriminative image features. The global network analyzes all-organ regions, while the local network simultaneously focuses on multiple single-organ regions. We then apply a novel feature fusion operation, leveraging a multi-head attention mechanism to weight global features according to the significance of localized features. Through this multi-channel approach, the framework is designed to identify complicated and subtle features within images, which often go unnoticed by the human eye. Evaluation on the ChestX-ray14 benchmark dataset demonstrates that our hybrid model consistently outperforms established state-of-the-art architectures, including ResNet-50, DenseNet-121, and CheXNet, by achieving significantly higher AUC scores across multiple thoracic disease classification tasks. By incorporating test-time augmentation, the model achieved an average accuracy of 95.7% and a specificity of 99%. The experimental findings indicated that our model attained an average testing AUC of 87%. In addition, our method tackles a more practical clinical problem, and preliminary results suggest its feasibility and effectiveness. It could assist clinicians in making timely decisions about lung diseases.

2025

Learning from the aggregated optimum: Managing port wine inventory in the face of climate risks

Autores
Pahr, A; Grunow, M; Amorim, P;

Publicação
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

Abstract
Port wine stocks ameliorate during storage, facilitating product differentiation according to age. This induces a trade-off between immediate revenues and further maturation. Varying climate conditions in the limited supply region lead to stochastic purchase prices for wine grapes. Decision makers must integrate recurring purchasing, production, and issuance decisions. Because stocks from different age classes can be blended to create final products, the solution space increases exponentially in the number of age classes. We model the problem of managing port wine inventory as a Markov decision process, considering decay as an additional source of uncertainty. For small problems, we derive general management strategies from the long-run behavior of the optimal policy. Our solution approach for otherwise intractable large problems, therefore, first aggregates age classes to create a tractable problem representation. We then use machine learning to train tree-based decision rules that reproduce the optimal aggregated policy and the enclosed management strategies. The derived rules are scaled back to solve the original problem. Learning from the aggregated optimum outperforms benchmark rules by 21.4% in annual profits (while leaving a 2.8%-gap to an upper bound). For an industry case, we obtain a 17.4%-improvement over current practices. Our research provides distinct strategies for how producers can mitigate climate risks. The purchasing policy dynamically adapts to climate-dependent price fluctuations. Uncertainties are met with lower production of younger products, whereas strategic surpluses of older stocks ensure high production of older products. Moreover, a wide spread in the age classes used for blending reduces decay risk exposure.

2025

InfraFix: Technology-Agnostic Repair of Infrastructure as Code

Autores
Saavedra, N; Ferreira, JF; Mendes, A;

Publicação
Proceedings of the 34th ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA Companion 2025, Clarion Hotel Trondheim, Trondheim, Norway, June 25-28, 2025

Abstract

2025

An Assessment of the Sensory Function in the Maxillofacial Region: A Dual-Case Pilot Study

Autores
Aguiar, JM; da Silva, JM; Fonseca, C; Marinho, J;

Publicação
SENSORS

Abstract
Trigeminal somatosensory-evoked potentials (TSEPs) provide valuable insight into neural responses to oral stimuli. This study investigates TSEP recording methods and their impact on interpreting results in clinical settings to improve the development process of neurostimulation-based therapies. The experiments and results presented here aim at identifying appropriate stimulation characteristics to design an active dental prosthesis capable of contributing to restoring the lost neurosensitive connection between the teeth and the brain. Two methods of TSEP acquisition, traditional and occluded, were used, each conducted by a different volunteer. Traditional TSEP acquisition involves stimulation at different sites with varying parameters to achieve a control base. In contrast, occluded TSEPs examine responses acquired under low- and high-force bite conditions to assess the influence of periodontal mechanoreceptors and muscle activation on measurements. Traditional TSEPs demonstrated methodological feasibility with satisfactory results despite a limited subject pool. However, occluded TSEPs presented challenges in interpreting results, with responses deviating from expected norms, particularly under high force conditions, due to the simultaneous occurrence of stimulation and dental occlusion. While traditional TSEPs highlight methodological feasibility, the occluded approach highlights complexities in outcome interpretation and urges caution in clinical application. Previously unreported results were achieved, which underscores the importance of conducting further research with larger sample sizes and refined protocols in order to strengthen the reliability and validity of TSEP assessments.

  • 7
  • 4281