2025
Autores
Daniel, P; Silva, VF; Ribeiro, P;
Publicação
COMPLEX NETWORKS & THEIR APPLICATIONS XIII, COMPLEX NETWORKS 2024, VOL 1
Abstract
With the huge amount of data that has been collected over time, many methods are being developed to allow better understanding and forecasting in several domains. Time series analysis is a powerful tool to achieve this goal. Despite being a well-established area, there are some gaps, and new methods are emerging to overcome these limitations, such as visibility graphs. Visibility graphs allow the analyses of times series as complex networks and make possible the use of more advanced techniques from another well-established area, network science. In this paper, we present two new efficient approaches for computing natural visibility graphs from times series, one for online scenarios in.O(n log n) and the other for offline scenarios in.O(nm), the latter taking advantage of the number of different values in the time series (m).
2025
Autores
Silva M.G.; Oliveira B.; Coimbra M.; Renna F.; de Carvalho A.V.;
Publicação
Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference
Abstract
In this study, we analyzed federated learning (FL) for ECG and PCG data from the PhysioNet 2016 challenge dataset. We tested multiple approaches of FL and evaluated how these approaches affect the performance metrics of cardiac abnormality detection while preserving data privacy. We compared the performance of the centralized and federated models with two and four clients. The results demonstrated that multimodal federated models using both ECG and PCG data consistently outperformed centralized single-modality ECG or PCG models; in fact the gains provided by multimodal approaches can compensate for the loss in performance induced by distributed learning. These findings highlight the potential of multimodal federated learning to not only provide decentralization advantages but also to achieve comparable performance with the centralized single-modality approaches.Clinical relevance- The clinical relevance of this research lies in its potential to improve cardiovascular disease detection by exploring multimodal models and federated learning. It can also help to optimize machine learning models for real-world clinical deployment while preserving patient privacy and achieving comparable performance metrics.
2025
Autores
Castro, A; Areias, M; Rocha, R;
Publicação
MATHEMATICS
Abstract
Hash maps are a widely used and efficient data structure for storing and accessing data organized as key-value pairs. Multithreading with hash maps refers to the ability to concurrently execute multiple lookup, insert, and delete operations, such that each operation runs independently while sharing the underlying data structure. One of the main challenges in hash map implementation is the management of collisions. Arguably, separate chaining is among the most well-known strategies for collision resolution. In this paper, we present a comprehensive study comparing two common approaches to implementing separate chaining-linked lists and dynamic arrays-in a multithreaded environment using a lock-based concurrent hash map design. Our study includes a performance evaluation covering parameters such as cache behavior, energy consumption, contention under concurrent access, and resizing overhead. Experimental results show that dynamic arrays maintain more predictable memory access and lower energy consumption in multithreaded environments.
2025
Autores
Silva, M; Faria, JP;
Publicação
Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering, ENASE 2025, Porto, Portugal, April 4-6, 2025.
Abstract
2025
Autores
Gallan, S; Alkire, L; Teixeira, JG; Heinonen, K; Fisk, P;
Publicação
AMS Review
Abstract
Amidst an urgent need for sustainability, novel approaches are required to address environmental challenges. In this context, biomimicry offers a promising logic for catalyzing nature’s wisdom to address this complexity. The purpose of this research is to (1) establish a biomimetic understanding and vocabulary for sustainability and (2) apply biomimicry to upframe service ecosystems as a foundation for sustainability. Our research question is: How can the principles of natural ecosystems inform and enhance the sustainability of service ecosystems? The findings highlight upframed service ecosystems as embodying a set of practices that (1) promote mutualistic interactions, (2) build on local biotic and abiotic components supporting emergence processes, (3) leverage (bio)diversity to build resilience, (4) foster resource sharing for regeneration, and (5) bridge individual roles to optimize the community rather than individual well-being. Our upframed definition of a service ecosystem is a system of resource-integrating biotic actors and abiotic resources functioning according to ecocentric principles for mutualistic and regenerative value creation. The discussion emphasizes the implications of this upframed definition for sustainability practices, advocating for a shift in understanding and interacting with service ecosystems. It emphasizes the potential for immediate mutualistic benefits and long-term regenerative impacts. © Academy of Marketing Science 2025.
2025
Autores
Salazar, T; Gama, J; Araújo, H; Abreu, PH;
Publicação
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS
Abstract
In the evolving field of machine learning, ensuring group fairness has become a critical concern, prompting the development of algorithms designed to mitigate bias in decision-making processes. Group fairness refers to the principle that a model's decisions should be equitable across different groups defined by sensitive attributes such as gender or race, ensuring that individuals from privileged groups and unprivileged groups are treated fairly and receive similar outcomes. However, achieving fairness in the presence of group-specific concept drift remains an unexplored frontier, and our research represents pioneering efforts in this regard. Group-specific concept drift refers to situations where one group experiences concept drift over time, while another does not, leading to a decrease in fairness even if accuracy (ACC) remains fairly stable. Within the framework of federated learning (FL), where clients collaboratively train models, its distributed nature further amplifies these challenges since each client can experience group-specific concept drift independently while still sharing the same underlying concept, creating a complex and dynamic environment for maintaining fairness. The most significant contribution of our research is the formalization and introduction of the problem of group-specific concept drift and its distributed counterpart, shedding light on its critical importance in the field of fairness. In addition, leveraging insights from prior research, we adapt an existing distributed concept drift adaptation algorithm to tackle group-specific distributed concept drift, which uses a multimodel approach, a local group-specific drift detection mechanism, and continuous clustering of models over time. The findings from our experiments highlight the importance of addressing group-specific concept drift and its distributed counterpart to advance fairness in machine learning.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.