2025
Autores
Rodrigues, JF; Cardoso, HL; Lopes, CT;
Publicação
COMPANION PROCEEDINGS OF THE ACM WEB CONFERENCE 2025, WWW COMPANION 2025
Abstract
Text simplification converts complex text into simpler language, improving readability and comprehension. This study evaluates the effectiveness of open-source large language models for text simplification across various categories. We created a dataset of 66,620 lead section pairs from English and Simple English Wikipedia, spanning nine categories, and tested Llama 3 for text simplification. We assessed its output for readability, simplicity, and meaning preservation. Results show improved readability, with simplification varying by category. Texts on Time were the most shortened, while Leisurerelated texts had the greatest reduction of words/characters and syllables per sentence. Meaning preservation was most effective for the Objects and Education categories.
2025
Autores
Oliveira, J; Rocha, T; Barroso, J;
Publicação
Technology for Inclusion and Participation for All: Recent Achievements and Future Directions
Abstract
2025
Autores
Dias, PA; de Souza, JPC; Pires, EJS; Filipe, V; Figueiredo, D; Rocha, LF; Silva, MF;
Publicação
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS
Abstract
In an era where robots are becoming an integral part of human quotidian activities, understanding how they function is crucial. Among the inherent building complexities, from electronics to mechanics, path planning emerges as a universal aspect of robotics. The primary contribution of this work is to provide an overview of the current state of robot path planning topics and a comparison between those same algorithms and its inherent characteristics. The path planning concept relies on the process by which an algorithm determines a collision-free path between a start and an end point, optimizing parameters such as energy consumption and distance. The quest for the most effective path planning method has been a long-standing discussion, as the choice of method is highly dependent on the specific application. This review consolidates and elucidates the categories of path planning methods, specifically classical or analytical methods, and computer intelligence methods. In addition, the operational principles of these categories will be explored, discussing their respective advantages and disadvantages, and reinforcing these discussions with relevant studies in the field. This work will focus on the most prevalent and recognized methods within the robotics path planning problem, being mobile robotics or manipulator arms, including Cell Decomposition, A*, Probabilistic Roadmaps, Rapidly-exploring Random Trees, Genetic Algorithms, Particle Swarm Optimization, Ant Colony Optimization, Artificial Potential Fields, Fuzzy, and Neural Networks. Following the detailed explanation of these methods, a comparative analysis of their advantages and drawbacks is organized in a comprehensive table. This comparison will be based on various quality metrics, such as the type of trajectory provided (global or local), the scenario implementation type (real or simulated scenarios), testing environments (static or dynamic), hybrid implementation possibilities, real-time implementation, completeness of the method, consideration of the robot's kinodynamic constraints, use of smoothing techniques, and whether the implementation is online or offline.
2025
Autores
Rocha, FM; Dutra, I; Costa, VS;
Publicação
INTELLIGENZA ARTIFICIALE
Abstract
The Abstraction and Reasoning Corpus (ARC-AGI) is an Artificial General Intelligence benchmark that is currently unsolved. It demands strong generalization and reasoning capabilities, which are known to be weaknesses of Neural Network based systems. In this work, we propose a Program synthesis system to solve it, which casts an ARC-AGI task as a sequence of Inductive Logic Programming tasks. We have implemented a simple Domain Specific Language that corresponds to a small set of object-centric abstractions relevant to the benchmark. This allows for adequate representations to be used to create logic programs, which provide reasoning capabilities to our system. When solving each task, the proposed system can generalize from a few training pairs of input-output grids. The obtained logic programs are able to generate objects present in the output grids and can transform the test input grid into the output grid solution. We developed our system based on some ARC-AGI tasks that do not require more than the small number of primitives that we implemented and showed that our system can solve unseen tasks that require different reasoning.
2025
Autores
Dias, M; Lopes, CT;
Publicação
RESEARCH CHALLENGES IN INFORMATION SCIENCE, RCIS 2025, PT II
Abstract
Entity linking is an important task in medical natural language processing (NLP) for converting unstructured text into structured data for clinical analysis and semantic interoperability. However, in lower-resource languages, this task is challenging due to the limited availability of domain-specific resources. This paper explores a translation-based cross-lingual entity linking approach using GPT models, GPT-3.5 and GPT-4o, for zero-shot machine translation and entity linking with in-context learning. We evaluate our approach using a Portuguese-English parallel dataset of radiology abstracts. Our results show that chunk-level machine translation outperforms sentence-level translation. Moreover, our translationbased approach to cross-lingual entity linking of UMLS concepts outperformed the multilingual encoder method baseline. However, the in-context learning entity linking approach did not outperform a translation-based approach with a dictionary-based entity linking method.
2025
Autores
Rocha, B; Ramos, F; Costa, NAR; Pires, J; Barroso, JMP; Pereira, J;
Publicação
Proceedings of the 11th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion
Abstract
We present a novel solution for automatic task allocation in multi-device environments, where configured robots compete for task assignment when announcing tasks, minimizing manual intervention. To this end, we propose the specification of a task assignment system and a task-oriented programming method aimed at automating processes and optimizing resource utilization in multiple controller environments. The proposed solution with its market-based algorithm and developed architecture improves the adaptability, scalability and overall efficiency of the system. The research discussion extends to broader implications that are consistent with the overall goal of improving robot capabilities in various deployment scenarios. © 2025 Elsevier B.V., All rights reserved.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.