2025
Autores
Ferreira, R; Silva, J; Romariz, M; Pinto, D; Araújo, RJ; Santinha, J; Gouveia, P; Oliveira, HP;
Publicação
2025 IEEE 25th International Conference on Bioinformatics and Bioengineering (BIBE)
Abstract
2025
Autores
Oliveira, R; Pedras, S; Veiga, C; Moreira, L; Santarem, D; Guedes, D; Paredes, H; Silva, I;
Publicação
INFORMATICS FOR HEALTH & SOCIAL CARE
Abstract
This study presents the development and assessment of a mobile application - the WalkingPAD app - aimed at promoting adherence to physical exercise among patients with Peripheral Arterial Disease (PAD). The assessment of adherence, acceptability, and usability was performed using mixed methods. Thirty-eight patients participated in the study with a mean age of 63.4 years (SD = 6.8). Thirty patients used the application for three months, responded to a semi-structured interview, and completed a task test and the System Usability Scale (SUS, ranging from 0 to 100). The application's adherence rate was 73%. When patients were asked about their reasons for using the app, the main themes that emerged were motivation, self-monitoring, and support in fulfilling a commitment. The average SUS score was 82.82 (SD = 18.4), indicating high usability. An upcoming version of the WalkingPAD app is expected to redesign both tasks - opening the app and looking up the walking history - which were rated as the most difficult tasks to accomplish. The new version of the WalkingPAD app will incorporate participants' comments and suggestions to enhance usability for this population.
2025
Autores
DeAndres-Tame, I; Tolosana, R; Melzi, P; Vera-Rodriguez, R; Kim, M; Rathgeb, C; Liu, XM; Gomez, LF; Morales, A; Fierrez, J; Ortega-Garcia, J; Zhong, ZZ; Huang, YG; Mi, YX; Ding, SH; Zhou, SG; He, S; Fu, LZ; Cong, H; Zhang, RY; Xiao, ZH; Smirnov, E; Pimenov, A; Grigorev, A; Timoshenko, D; Asfaw, KM; Low, CY; Liu, H; Wang, CY; Zuo, Q; He, ZX; Shahreza, HO; George, A; Unnervik, A; Rahimi, P; Marcel, S; Neto, PC; Huber, M; Kolf, JN; Damer, N; Boutros, F; Cardoso, JS; Sequeira, AF; Atzori, A; Fenu, G; Marras, M; Struc, V; Yu, J; Li, ZJ; Li, JC; Zhao, WS; Lei, Z; Zhu, XY; Zhang, XY; Biesseck, B; Vidal, P; Coelho, L; Granada, R; Menotti, D;
Publicação
INFORMATION FUSION
Abstract
Synthetic data is gaining increasing popularity for face recognition technologies, mainly due to the privacy concerns and challenges associated with obtaining real data, including diverse scenarios, quality, and demographic groups, among others. It also offers some advantages over real data, such as the large amount of data that can be generated or the ability to customize it to adapt to specific problem-solving needs. To effectively use such data, face recognition models should also be specifically designed to exploit synthetic data to its fullest potential. In order to promote the proposal of novel Generative AI methods and synthetic data, and investigate the application of synthetic data to better train face recognition systems, we introduce the 2nd FRCSyn-onGoing challenge, based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024. This is an ongoing challenge that provides researchers with an accessible platform to benchmark (i) the proposal of novel Generative AI methods and synthetic data, and (ii) novel face recognition systems that are specifically proposed to take advantage of synthetic data. We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition such as demographic bias, domain adaptation, and performance constraints in demanding situations, such as age disparities between training and testing, changes in the pose, or occlusions. Very interesting findings are obtained in this second edition, including a direct comparison with the first one, in which synthetic databases were restricted to DCFace and GANDiffFace.
2025
Autores
Bessa, G; Barbosa, B;
Publicação
Global Economics Research
Abstract
2025
Autores
Silva, CAM; Andrade, JR; Ferreira, A; Gomes, A; Bessa, RJ;
Publicação
ENERGY
Abstract
Electric vehicles (EVs) are crucial in achieving a low-carbon transportation sector and can inherently offer demand-side flexibility by responding to price signals and incentives, yet real-world strategies to influence charging behavior remain limited. This paper combines bilevel optimization and causal machine learning as complementary tools to design and evaluate dynamic incentive schemes as part of a pilot project using a supermarket's EV charging station network. The bilevel model determines discount levels, while double machine learning quantifies the causal impact of these incentives on charging demand. The results indicate a marginal increase of 1.16 kW in charging demand for each one-percentage-point increase in discount. User response varies by hour and weekday, revealing treatment effect heterogeneity, insights that can inform business decision-making. While the two methods are applied independently, their combined use provides a framework for connecting optimization-based incentive design with data-driven causal evaluation. By isolating the impact of incentives from other drivers, the study sheds light on the potential of incentives to enhance demand-side flexibility in the electric mobility ecosystem.
2025
Autores
Faria, N; Pereira, J;
Publicação
Proc. ACM Manag. Data
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.