Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2024

Battery Control for Node Capacity Increase for Electric Vehicle Charging Support

Autores
Ahmad, MW; Lucas, A; Carvalhosa, SMP;

Publicação
ENERGIES

Abstract
The integration of electric vehicles (EVs) into the power grid poses significant challenges and opportunities for energy management systems. This is especially concerning for parking lots or private building condominiums in which refurbishing is not possible or is costly. This paper presents a real-time monitoring approach to EV charging dynamics with battery storage support over a 24 h period. By simulating EV demand, state of charge (SOC), and charging and discharging events, we provide insights into the operational strategies for energy storage systems to ensure maximum charging simultaneity factor through internal power enhancement. The study uses a time-series analysis of EV demand, contrasting it with the battery's SOC, to dynamically adjust charging and discharging actions within the constraints of the upstream infrastructure capacity. The model incorporates parameters such as maximum power capacity, energy storage capacity, and charging efficiencies, to reflect realistic conditions. Results indicate that real-time SOC monitoring, coupled with adaptive charging strategies, can mitigate peak demands and enhance the system's responsiveness to fluctuating loads. This paper emphasizes the critical role of real-time data analysis in the effective management of energy resources in existing parking lots and lays the groundwork for developing intelligent grid-supportive frameworks in the context of growing EV adoption.

2024

A YOLO-Based Insect Detection: Potential Use of Small Multirotor Unmanned Aerial Vehicles (UAVs) Monitoring

Autores
Berger, GS; Mendes, J; Chellal, AA; Bonzatto, L; da Silva, YMR; Zorawski, M; Pereira, AI; Pinto, MF; Castro, J; Valente, A; Lima, J;

Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT I, OL2A 2023

Abstract
This paper presents an approach to address the challenges of manual inspection using multirotor Unmanned Aerial Vehicles (UAV) to detect olive tree flies (Bactrocera oleae). The study employs computer vision techniques based on the You Only Look Once (YOLO) algorithm to detect insects trapped in yellow chromotropic traps. Therefore, this research evaluates the performance of the YOLOv7 algorithm in detecting and quantify olive tree flies using images obtained from two different digital cameras in a controlled environment at different distances and angles. The findings could potentially contribute to the automation of insect pest inspection by UAV-based robotic systems and highlight potential avenues for future advances in this field. In view of the experiments conducted indoors, it was found that the Arducam IMX477 camera acquires images with greater clarity compared to the TelloCam, making it possible to correctly highlight the set of Bactrocera oleae in different prediction models. The presented results in this research demonstrate that with the introduction of data augmentation and auto label techniques on the set of images of Bactrocera oleae, it was possible to arrive at a prediction model whose average detection was 256 Bactrocera oleae in relation to the corresponding ground truth value to 270 Bactrocera oleae.

2024

The Importance of a Framework for the Implementation of Technologies Supporting Talent Management

Autores
Ferreira, HR; Santos, A; Mamede, HS;

Publicação
GOOD PRACTICES AND NEW PERSPECTIVES IN INFORMATION SYSTEMS AND TECHNOLOGIES, VOL 3, WORLDCIST 2024

Abstract
The speed and scale of technological change are raising concerns about the extent to which new technologies will radically transform workplaces. Competition for the best talent is being intensified, and talent management requires new approaches and innovative strategies for developing talent based on corporate culture and its unique properties. By implementing and adopting technology in Human Resources Management (HRM), organizations create a digital employee lifecycle that spans from the initial Hiring Process to encompassing areas such as Performance Management, Learning and Development until the Offboarding, shaping a Talent Management journey. Despite the implementation of technologies being a continuous practice observed in numerous organizations, there are still challenges. The HRM technological market has become massive, and concerns arise about adopting these technologies' costs, practicality, and purpose. Because of that, designing strategies for implementing technologies in HRM, specifically in talent management, is hard to overview. In this context, this document aims to present the necessity and significance in developing a framework that aggregates the implementation process of technologies in talent management supported by Design Science Research (DSR). The holistic perspective of the forthcoming framework consolidates insights into business challenges and their correlation with technology selection, technological capabilities, implementation procedures, as well as anticipated metrics and their impact.

2024

Modelling FACTS controllers in fast-decoupled state estimation

Autores
Hasler, CFS; Lourenço, EM; Tortelli, OL; Portelinha, RK;

Publicação
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
This paper proposes to extend the fast-decoupled state estimation formulation to bring its well-known efficiency and benefits to the processing of networks with embedded FACTS devices. The proposed method approaches shunt-, series-, and shunt -series -type devices. The controller parameters are included as new active or reactive state variables, while controlled quantity values are included in the metering scheme of the decoupled approach. From the electrical model adopted for each device, the extended formulation is presented, and a modified fast-decoupled method is devised, seeking to ensure accuracy and impart robustness to the iterative solution. Simulation results conducted throughout the IEEE 30 -bus test system with distinct types of FACTS devices are used to validate and evaluate the performance of the proposed decoupled approaches.

2024

Corrector LSTM: built-in training data correction for improved time-series forecasting

Autores
Baghoussi, Y; Soares, C; Moreira, JM;

Publicação
Neural Comput. Appl.

Abstract
Traditional recurrent neural networks (RNNs) are essential for processing time-series data. However, they function as read-only models, lacking the ability to directly modify the data they learn from. In this study, we introduce the corrector long short-term memory (cLSTM), a Read & Write LSTM architecture that not only learns from the data but also dynamically adjusts it when necessary. The cLSTM model leverages two key components: (a) predicting LSTM’s cell states using Seasonal Autoregressive Integrated Moving Average (SARIMA) and (b) refining the training data based on discrepancies between actual and forecasted cell states. Our empirical validation demonstrates that cLSTM surpasses read-only LSTM models in forecasting accuracy across the Numenta Anomaly Benchmark (NAB) and M4 Competition datasets. Additionally, cLSTM exhibits superior performance in anomaly detection compared to hierarchical temporal memory (HTM) models. © The Author(s) 2024.

2024

Harnessing the Distributed Computing Paradigm for Laser-Induced Breakdown Spectroscopy

Autores
Silva, NA;

Publicação
BIG DATA AND COGNITIVE COMPUTING

Abstract
Laser-induced breakdown spectroscopy allows fast and versatile elemental analysis, standing as a promising technique for a wide range of applications both at the research and industry levels. Yet, its high operation speed comes with a high throughput of data, which introduces some challenges at the level of the data processing domain, mainly due to the large computational load and data volume. In this work, we analyze and discuss opportunities of distributed computing paradigms and resources to address some of these challenges, covering most of the procedures usually employed in typical applications. We infer the possible impact of such computing resources by presenting some metrics of simple processing prototypes running in state-of-the-art computing facilities. Our results allow us to conclude that, while underexplored so far, these computing resources may allow for the development of tools for timely research and analysis in demanding applications and introduce novel solutions toward a more agile working environment.

  • 75
  • 3960