2024
Autores
Grilo, V; Ferreira, E; Barbosa, A; Chellal, AA; Lima, J;
Publicação
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2
Abstract
Robotics competitions have been increasing in the last years since they bring several impacts on students education, such as technical skill development, teamwork, resilience and decision making withing the STEM skills. The article highlights the significance of robotics competitions as platforms for fostering innovation and driving advancements in the field of robotics. This article primarily focuses on the development of a robot in the Dragster category for the 2023 Portuguese Robotics Open. It outlines the strategies devised to tackle the competition's challenges and discusses the obstacles encountered along with the corresponding solutions employed. The article delves into the specific details of the challenges faced and the iterative processes undertaken to enhance the robot's performance and functionalities. By sharing the insights gained from the project, future proposals for iterations of the robot will be presented, aiming to further augment its features and overall performance while sharing knowledge with other teams and community.
2024
Autores
Tosin, R; Cunha, M; Monteiro Silva, F; Santos, F; Barroso, T; Martins, R;
Publicação
FRONTIERS IN PLANT SCIENCE
Abstract
Introduction: Precision monitoring maturity in climacteric fruits like tomato is crucial for minimising losses within the food supply chain and enhancing pre- and post-harvest production and utilisation. Objectives: This paper introduces an approach to analyse the precision maturation of tomato using hyperspectral tomography-like. Methods: A novel bi-directional spectral reconstruction method is presented, leveraging visible to near-infrared (Vis-NIR) information gathered from tomato spectra and their internal tissues (skin, pulp, and seeds). The study, encompassing 118 tomatoes at various maturation stages, employs a multi-block hierarchical principal component analysis combined with partial least squares for bi-directional reconstruction. The approach involves predicting internal tissue spectra by decomposing the overall tomato spectral information, creating a superset with eight latent variables for each tissue. The reverse process also utilises eight latent variables for reconstructing skin, pulp, and seed spectral data. Results: The reconstruction of the tomato spectra presents a mean absolute percentage error of 30.44 % and 5.37 %, 5.25 % and 6.42 % and Pearson's correlation coefficient of 0.85, 0.98, 0.99 and 0.99 for the skin, pulp and seed, respectively. Quality parameters, including soluble solid content (%), chlorophyll (a.u.), lycopene (a.u.), and puncture force (N), were assessed and modelled with PLS with the original and reconstructed datasets, presenting a range of R2 higher than 0.84 in the reconstructed dataset. An empirical demonstration of the tomato maturation in the internal tissues revealed the dynamic of the chlorophyll and lycopene in the different tissues during the maturation process. Conclusion: The proposed approach for inner tomato tissue spectral inference is highly reliable, provides early indications and is easy to operate. This study highlights the potential of Vis-NIR devices in precision fruit maturation assessment, surpassing conventional labour-intensive techniques in cost-effectiveness and efficiency. The implications of this advancement extend to various agronomic and food chain applications, promising substantial improvements in monitoring and enhancing fruit quality. [GRAPHICS] .
2024
Autores
Cordeiro, A; Rocha, LF; Boaventura-Cunha, J; de Souza, JPC;
Publicação
2024 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
Numerous pose estimation methodologies demonstrate a decrement in accuracy or efficiency metrics when subjected to highly cluttered scenarios. Currently, companies expect high-efficiency robotic systems to close the gap between humans and machines, especially in logistic operations, which is highlighted by the requirement to execute operations, such as navigation, perception and picking. To mitigate this issue, the majority of strategies augment the quantity of detected and matched features. However, in this paper, it is proposed a system which adopts an inverse strategy, for instance, it reduces the types of features detected to enhance efficiency. Upon detecting 2D polygons, this solution perceives objects, identifies their corners and edges, and establishes a relationship between the features extracted from the perceived object and the known object model. Subsequently, this relationship is used to devise a weighting system capable of predicting an optimal final pose estimation. Moreover, it has been demonstrated that this solution applies to different objects in real scenarios, such as intralogistic, and industrial, provided there is prior knowledge of the object's shape and measurements. Lastly, the proposed method was evaluated and found to achieve an average overlap rate of 89.77% and an average process time of 0.0398 seconds per object pose estimation.
2024
Autores
Moreno, A; Villar, J; Macedo, P; Silva, R; Bayo, S; Bessa, R;
Publicação
2024 20TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM 2024
Abstract
The deployment of energy communities (EC) will foster new business models contributing to the decentralization and democratization of energy access and a reduction in the energy bill of final consumers. This decentralization is only possible if investments are made in production and storage technologies, that must be installed near the locals of consumption, according to common rules of the regulatory frameworks of EC. In this paper we propose a methodology for the optimal sizing of production and shared storage assets, and we assess the cost reduction of considering shared storage assets. We then formulate seven business models (BM) that dictate how to share this benefit among the EC members, and we propose two indicators to assess them. Results show the difficulty in choosing a BM as well as the limitations of the BM and of the indicators.
2024
Autores
Matos, DM; Costa, P; Sobreira, H; Valente, A; Lima, J;
Publicação
INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS
Abstract
With the increasing adoption of mobile robots for transporting components across several locations in industries, congestion problems appear if the movement of these robots is not correctly planned. This paper introduces a fleet management system where a central agent coordinates, plans, and supervises the fleet, mitigating the risk of deadlocks and addressing issues related to delays, deviations between the planned paths and reality, and delays in communication. The system uses the TEA* graph-based path planning algorithm to plan the paths of each agent. In conjunction with the TEA* algorithm, the concepts of supervision and graph-based environment representation are introduced. The system is based on ROS framework and allows each robot to maintain its autonomy, particularly in control and localization, while aligning its path with the plan from the central agent. The effectiveness of the proposed fleet manager is demonstrated in a real scenario where robots operate on a shop floor, showing its successful implementation.
2024
Autores
Rozas, LAH; Campos, FA; Villar, J;
Publicação
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
Abstract
Hydrogen production through renewable energy-powered electrolysis is pivotal for fostering a sustainable future hydrogen market. In the electricity sector, hydrogen production bears an additional demand that affects electricity price, and mathematical models are needed for the joint simulation, analysis, and planning of electricity and hydrogen sectors. This study develops a Cournot and a perfect competition model to analyze the links of the electricity and hydrogen sectors. In contrast to other solving methods approaches, the Cournot model is solved by convex reformulation techniques, substantially easing the resolution. The case studies, focusing on the Iberian Peninsula, demonstrate the region's potential for competitive hydrogen production, and the advantages of perfect competition to maximize the use of renewable energies, in contrast to Cournot's oligopoly, where the exercise of market power raises electricity prices. Sensitivity analyses highlight the importance of strategic decision-making in mitigating market inefficiencies, with valuable insights for stakeholders and policymakers.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.