Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2024

Vision System for a Forestry Navigation Machine

Autores
Pereira, T; Gameiro, T; Pedro, J; Viegas, C; Ferreira, NMF;

Publicação
SENSORS

Abstract
This article presents the development of a vision system designed to enhance the autonomous navigation capabilities of robots in complex forest environments. Leveraging RGBD and thermic cameras, specifically the Intel RealSense 435i and FLIR ADK, the system integrates diverse visual sensors with advanced image processing algorithms. This integration enables robots to make real-time decisions, recognize obstacles, and dynamically adjust their trajectories during operation. The article focuses on the architectural aspects of the system, emphasizing the role of sensors and the formulation of algorithms crucial for ensuring safety during robot navigation in challenging forest terrains. Additionally, the article discusses the training of two datasets specifically tailored to forest environments, aiming to evaluate their impact on autonomous navigation. Tests conducted in real forest conditions affirm the effectiveness of the developed vision system. The results underscore the system's pivotal contribution to the autonomous navigation of robots in forest environments.

2024

Overview on Constrained Multiparty Synchronisation in Team Automata

Autores
Proença, J;

Publicação
FORMAL ASPECTS OF COMPONENT SOFTWARE, FACS 2023

Abstract
This paper provides an overview on recent work on Team Automata, whereby a network of automata interacts by synchronising actions from multiple senders and receivers. We further revisit this notion of synchronisation in other well known concurrency models, such as Reo, BIP, Choreography Automata, and Multiparty Session Types. We address realisability of Team Automata, i.e., how to infer a network of interacting automata from a global specification, taking into account that this realisation should satisfy exactly the same properties as the global specification. In this analysis we propose a set of interesting directions of challenges and future work in the context of Team Automata or similar concurrency models.

2024

Supporting decision-making of collaborative robot (cobot) adoption: The development of a framework

Autores
Silva, A; Simoes, AC; Blanc, R;

Publicação
TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE

Abstract
Collaborative robots (cobots) are emerging in manufacturing as a response to the current mass customization production paradigm and the fifth industrial revolution. Before adopting this technology in production processes and benefiting from its advantages, manufacturers need to analyze the investment. Therefore, this study aims to develop a decision -making framework for cobot adoption, incorporating a comprehensive set of quantitative and qualitative criteria, to be used by decision -makers in manufacturing companies. To achieve that objective, a qualitative study was conducted by collecting data through interviews with key actors in the cobot (or advanced manufacturing technologies) adoption decision process in manufacturing companies. The main findings of this study include, firstly, an extensive list of decision criteria, as well as some indicators to be used by decisionmakers, some of which are new to the literature. Secondly, a decision -making framework for cobot adoption is proposed, as well as a set of guidelines to use it. The framework is based on a weighted scoring method and can be customizable by the manufacturing company depending on its specific context, needs, and resources. The main contribution of this study consists in assisting decision -makers of manufacturing companies in performing more complete and sustained decision analyses regarding cobots adoption.

2024

Logging design patterns for cloud-native applications

Autores
Albuquerque, C; Correia, FF;

Publicação
Proceedings of the 29th European Conference on Pattern Languages of Programs, People, and Practices, EuroPLoP 2024, Irsee, Germany, July 3-7, 2024

Abstract

2024

Semantic Asset Administration Shell Towards a Cognitive Digital Twin

Autores
Moreno T.; Sobral T.; Almeida A.; Soares A.L.; Azevedo A.;

Publicação
Lecture Notes in Mechanical Engineering

Abstract
Manufacturing industry is experiencing another revolution towards the digitalization of industrial processes. Different value chain actors must share specific and sensitive data according to business and data requirements. Digital architectures must ensure seamless and comprehensive communications between actors according to agreed-upon vocabularies. The digital representation of machines and other types of equipment, including crucial information about their static and dynamic operational data, is made possible by the ontological modelling of Asset Administration Shells (AAS), which is proposed in this paper as modular and semantically interoperable resources. These Cognitive Digital Twins are herein defined with de facto domain ontologies that model the semantics of the current operation, status and configurations of assets. This paper reports a proof-of-concept technical implementation that demonstrates an innovative digital architecture that connects and communicates active and modular Digital Twin of a machine in a bi-directional, connecting this asset to a digital manufacturing service provider.

2024

Plant Disease Diagnosis Based on Hyperspectral Sensing: Comparative Analysis of Parametric Spectral Vegetation Indices and Nonparametric Gaussian Process Classification Approaches

Autores
Pereira, MR; Verrelst, J; Tosin, R; Caicedo, JPR; Tavares, F; dos Santos, FN; Cunha, M;

Publicação
AGRONOMY-BASEL

Abstract
Early and accurate disease diagnosis is pivotal for effective phytosanitary management strategies in agriculture. Hyperspectral sensing has emerged as a promising tool for early disease detection, yet challenges remain in effectively harnessing its potential. This study compares parametric spectral Vegetation Indices (VIs) and a nonparametric Gaussian Process Classification based on an Automated Spectral Band Analysis Tool (GPC-BAT) for diagnosing plant bacterial diseases using hyperspectral data. The study conducted experiments on tomato plants in controlled conditions and kiwi plants in field settings to assess the performance of VIs and GPC-BAT. In the tomato experiment, the modeling processes were applied to classify the spectral data measured on the healthy class of plants (sprayed with water only) and discriminate them from the data captured on plants inoculated with the two bacterial suspensions (108 CFU mL-1). In the kiwi experiment, the standard modeling results of the spectral data collected on nonsymptomatic plants were compared to the ones obtained using symptomatic plants' spectral data. VIs, known for their simplicity in extracting biophysical information, successfully distinguished healthy and diseased tissues in both plant species. The overall accuracy achieved was 63% and 71% for tomato and kiwi, respectively. Limitations were observed, particularly in differentiating specific disease infections accurately. On the other hand, GPC-BAT, after feature reduction, showcased enhanced accuracy in identifying healthy and diseased tissues. The overall accuracy ranged from 70% to 75% in the tomato and kiwi case studies. Despite its effectiveness, the model faced challenges in accurately predicting certain disease infections, especially in the early stages. Comparative analysis revealed commonalities and differences in the spectral bands identified by both approaches, with overlaps in critical regions across plant species. Notably, these spectral regions corresponded to the absorption regions of various photosynthetic pigments and structural components affected by bacterial infections in plant leaves. The study underscores the potential of hyperspectral sensing in disease diagnosis and highlights the strengths and limitations of VIs and GPC-BAT. The identified spectral features hold biological significance, suggesting correlations between bacterial infections and alterations in plant pigments and structural components. Future research avenues could focus on refining these approaches for improved accuracy in diagnosing diverse plant-pathogen interactions, thereby aiding disease diagnosis. Specifically, efforts could be directed towards adapting these methodologies for early detection, even before symptom manifestation, to better manage agricultural diseases.

  • 88
  • 3959