Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

2025

A Framework for Adaptive Recommendation in Online Environments

Autores
Rogério Xavier De Azambuja; A. Jorge Morais; Vítor Filipe;

Publicação
Artificial Intelligence and Applications

Abstract
Recent advancements in deep learning and large language models (LLMs) have led to the development of innovative technologies that enhance recommender systems. Different heuristics, architectures, and techniques for filtering information have been proposed to obtain successful computational models for the recommendation problem; however, several issues must be addressed in online environments. This research focuses on a specific type of recommendation, which combines sequential recommendation with session-based recommendation. The goal is to solve the complex next-item recommendation problem in Web applications, using the wine domain as a case study. This paper describes a framework developed to provide adaptive recommendations by rethinking the initial data modeling to better understand users' dynamic taste profiles. Three main contributions are presented: (a) a novel dataset of wines called X-Wines; (b) an updated recommendation model named X-Model4Rec – eXtensible Model for Recommendation, which utilizes attention and transformer mechanisms central to LLMs; and (c) a collaborative Web platform designed to support adaptive wine recommendations for users in an online environment. The results indicate that the proposed framework can enhance recommendations in online environments and encourage further scientific exploration of this topic.   Received: 15 December 2024 | Revised: 12 June 2025 | Accepted: 30 June 2025   Conflicts of Interest The authors declare that they have no conflicts of interest to this work.   Data Availability Statement The data that support the findings of this study are openly available in X-Wines Research Project at https://sites.google.com/farroupilha.ifrs.edu.br/xwines.   Author Contribution Statement Rogério Xavier de Azambuja: Conceptualization, Methodology, Software, Validation, Formal analysis, Investigation, Resources, Data curation, Writing – original draft, Writing – review & editing, Visualization, and Project administration. A. Jorge Morais: Conceptualization, Methodology, Validation, Formal analysis, Data curation, Writing – review & editing, Visualization, Supervision, and Project administration. Vítor Filipe: Conceptualization, Methodology, Validation, Formal analysis, Data curation, Writing – review & editing, Visualization, and Project administration.

2025

DESIGNING A SHARED FRAMEWORK FOR TRANSVERSAL SKILLS IN THE EUGLOH ALLIANCE

Autores
Elizaveta Osipovskaya; Luis Fernández-Sanz; António Fernando Coelho; Inés López-Baldominos; Péter Tasi;

Publicação
ICERI proceedings

Abstract

2025

Digital Justice in the EU: Integration of BPMN and AI into ODR Processes

Autores
Ribeiro, M; Carneiro, D; Mesquita, L;

Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2024, PT I

Abstract
With the proliferation of ODR service providers, there is a critical necessity to establish mechanisms supporting their functioning, particularly while designing ODR processes. This article aims to examine the impact of process modelling using BPMN, and of its relevance in the integration of AI into ODR processes within the EU. BPMN allows a meticulous depiction of all the ODR process steps, stakeholders, and underlying data in structured formats that are readable and interpretable by both humans and AI, which enables its integration. The advantages include predictive analysis, identification of opportunities for continuous improvement, operational efficiency, cost and time reduction, and enhanced accessibility for self-represented litigants. Additionally, the transparency afforded by explicitly incorporating AI in BPMN notation fosters a clearer comprehension of processes, facilitating management and informed decision-making. Nevertheless, it remains imperative to address ethical concerns such as algorithmic bias, fairness, and privacy.

2025

How Knowledge Distillation Mitigates the Synthetic Gap in Fair Face Recognition

Autores
Neto, PC; Colakovic, I; Karakatic, S; Sequeira, AF;

Publicação
COMPUTER VISION-ECCV 2024 WORKSHOPS, PT XX

Abstract
Leveraging the capabilities of Knowledge Distillation (KD) strategies, we devise a strategy to fight the recent retraction of face recognition datasets. Given a pretrained Teacher model trained on a real dataset, we show that carefully utilising synthetic datasets, or a mix between real and synthetic datasets to distil knowledge from this teacher to smaller students can yield surprising results. In this sense, we trained 33 different models with and without KD, on different datasets, with different architectures and losses. And our findings are consistent, using KD leads to performance gains across all ethnicities and decreased bias. In addition, it helps to mitigate the performance gap between real and synthetic datasets. This approach addresses the limitations of synthetic data training, improving both the accuracy and fairness of face recognition models.

2025

A systematic review of mathematical programming models and solution approaches for the textile supply chain

Autores
Alves, GA; Tavares, R; Amorim, P; Camargo, VCB;

Publicação
COMPUTERS & INDUSTRIAL ENGINEERING

Abstract
The textile industry is a complex and dynamic system where structured decision-making processes are essential for efficient supply chain management. In this context, mathematical programming models offer a powerful tool for modeling and optimizing the textile supply chain. This systematic review explores the application of mathematical programming models, including linear programming, nonlinear programming, stochastic programming, robust optimization, fuzzy programming, and multi-objective programming, in optimizing the textile supply chain. The review categorizes and analyzes 163 studies across the textile manufacturing stages, from fiber production to integrated supply chains. Key results reveal the utility of these models in solving a wide range of decision-making problems, such as blending fibers, production planning, scheduling orders, cutting patterns, transportation optimization, network design, and supplier selection, considering the challenges found in the textile sector. Analyzing those models, we point out that sustainability considerations, such as environmental and social aspects, remain underexplored and present significant opportunities for future research. In addition, this study emphasizes the importance of incorporating multi-objective approaches and addressing uncertainties in decision-making to advance sustainable and efficient textile supply chain management.

2025

ECG Biometrics

Autores
Pinto, JR; Cardoso, S;

Publicação
Encyclopedia of Cryptography, Security and Privacy, Third Edition

Abstract
[No abstract available]

  • 90
  • 4312