2025
Autores
Fortunato, M; Morais, R; Santana, I; Castro, P; Polónia, J; Azevedo, E; Cunha, JP; Monteiro, A;
Publicação
NEUROSCIENCE
Abstract
Hypertension is the primary risk factor for cerebral small vessel disease (CSVD). However, its mechanistic links are yet to be completely understood. Advancements in diffusion-weighted magnetic resonance imaging (dMRI) increased sensitivity in detecting subtle white matter (WM) structural integrity changes. 44 hypertension patients without symptomatic CSVD underwent multi-modal evaluation of cerebral structure and function, including dMRI, neuropsychological tests and transcranial Doppler monitoring of the right middle cerebral artery (MCA) and left posterior cerebral artery (PCA) to assess neurovascular coupling (NVC). In the PCA, the modeled NVC curve was studied. We examined the cross-sectional relationship of WM integrity with NVC and cognitive performance, using correlational tractography. Diffusion measures from two dMRI models were used: fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity from diffusion tensor imaging, and quantitative anisotropy (QA) and isotropy from q-space diffeomorphic reconstruction. Regarding the NVC in the PCA, vascular elastic properties and initial response speed markers indicated better functional hyperemia with better WM integrity. However, the amplitude suggested increased NVC with worse WM integrity. In the MCA, increased NVC was associated with lower WM integrity. Better cognitive performance associated with preserved WM integrity. Increased functional hyperemia despite worse WM integrity may reflect less efficient NVC in hypertensive patients, potentially arising from (mal)adaptive mechanisms and brain network reorganization in response to CSVD. This observational study highlights the potential of transcranial Doppler and QA as susceptibility markers of pre-symptomatic CSVD.
2025
Autores
Ferreira, J; Darabi, R; Sousa, A; Brueckner, F; Reis, LP; Reis, A; Tavares, JMRS; Sousa, J;
Publicação
JOURNAL OF INTELLIGENT MANUFACTURING
Abstract
This work introduces Gen-JEMA, a generative approach based on joint embedding with multimodal alignment (JEMA), to enhance feature extraction in the embedding space and improve the explainability of its predictions. Gen-JEMA addresses these challenges by leveraging multimodal data, including multi-view images and metadata such as process parameters, to learn transferable semantic representations. Gen-JEMA enables more explainable and enriched predictions by learning a decoder from the embedding. This novel co-learning framework, tailored for directed energy deposition (DED), integrates multiple data sources to learn a unified data representation and predict melt pool images from the primary sensor. The proposed approach enables real-time process monitoring using only the primary modality, simplifying hardware requirements and reducing computational overhead. The effectiveness of Gen-JEMA for DED process monitoring was evaluated, focusing on its generalization to downstream tasks such as melt pool geometry prediction and the generation of external melt pool representations using off-axis sensor data. To generate these external representations, autoencoder (AE) and variational autoencoder (VAE) architectures were optimized using Bayesian optimization. The AE outperformed other approaches achieving a 38% improvement in melt pool geometry prediction compared to the baseline and 88% in data generation compared with the VAE. The proposed framework establishes the foundation for integrating multisensor data with metadata through a generative approach, enabling various downstream tasks within the DED domain and achieving a small embedding, allowing efficient process control based on model predictions and embeddings.
2025
Autores
Ullah, Z; Da Silva, JAC; Nunes, RR; Barroso, JMP; Reis, AMD; Filipe, VMD; Pires, EJS;
Publicação
IEEE ACCESS
Abstract
This study examines the effectiveness of employing Advanced Rider Assistance System (ARAS) for enhancing motorcycle safety by reducing crashes and improving rider safety. The system includes both single solution approaches, like braking systems, and multi-sensor solutions that integrate data from LiDARs, radars, and cameras through sensor fusion. A systematic literature review was conducted to collect data from 2008 to 2024 across various sources related to ARAS. The review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines to ensure a comprehensive and transparent process. Data were extracted from the included studies, focusing on study design, sample size, intervention details, and outcomes. The risk of bias was assessed using a customized checklist. The review included 31 studies that met the inclusion criteria. Findings were summarized for single sensor solutions and sensor fusion approaches.The review indicates that single-solution systems are effective ARAS technologies. In contrast, the application of sensor fusion in motorcycles has been only minimally explored, making it difficult to draw definitive conclusions about its impact in this context. Evidence from four-wheeled vehicles, however, shows that sensor fusion can enhance perception robustness, improve performance under adverse conditions, and contribute to measurable safety gains. These results suggest that similar advantages could be realized for motorcycles as fusion-based ARAS technologies become more widely implemented. Moreover, sensor fusion holds the potential to provide riders with broader situational awareness and more comprehensive safety assistance than single-system solutions. Future research should focus on addressing the identified challenges and optimizing these systems for broader implementation. This review underscores the critical role of ARAS in reducing motorcycle-related incidents and improving rider safety, highlighting the need for ongoing research to refine sensor fusion algorithms and address technical challenges for real-world applications.
2025
Autores
Teixeira, B; Carvalhais, L; Pinto, T; Vale, Z;
Publicação
ENERGY AND BUILDINGS
Abstract
The increasing integration of Artificial Intelligence (AI) into Building Energy Management Systems (BEMS) is revolutionizing energy optimization by enabling real-time monitoring, predictive analytics, and automated control. While these advancements improve energy efficiency and sustainability, the opacity of AI models poses challenges in interpretability, limiting user trust and hindering widespread adoption in operational decisionmaking. Ensuring transparency is crucial for aligning AI insights with building performance requirements and regulatory expectations. This paper presents EI-Build, a novel Explainable Artificial Intelligence (XAI) framework designed to enhance the interpretability of intelligent automated BEMS. EI-Build integrates multiple XAI techniques, including Shapley Additive Explanations (SHAP), Local Interpretable Model-Agnostic Explanations (LIME), Anchors, Partial Dependence Plots, Feature Permutation Importance, and correlation-based statistical analysis, to provide comprehensive explanations of model behavior. By dynamically tailoring the format and depth of explanations, EI-Build ensures that insights remain accessible and actionable for different user profiles, from general occupants to energy specialists and machine learning experts. A case study on photovoltaic power generation forecasting applied to a real BEMS context evaluates EI-Build's capacity to deliver to deliver both global and local explanations, validate feature dependencies, and facilitate cross-comparison of interpretability techniques. The results highlight how EI-Build enhances user trust, facilitates informed decision-making, and improves model validation. By consolidating diverse XAI methods into a single automated framework, EI-Build represents a significant advancement in bridging the gap between complex AI energy models and real-world applications.
2025
Autores
Guimarães, D; Correia, A; Paulino, D; Cabral, D; Teixeira, M; Netto, A; Brito, WA; Paredes, H;
Publicação
Serious Games - 11th Joint International Conference, JCSG 2025, Lucerne, Switzerland, December 4-5, 2025, Proceedings
Abstract
As competitive and cooperative dynamics gain prominence in games, they present unique opportunities to study player behavior. This paper explores the orientations of different player types, as categorized by Bartle’s Taxonomy, through the lens of a Game With A Purpose (GWAP) called BartleZ. Bartle’s Taxonomy identifies four distinct player types–Achievers, Explorers, Socializers, and Killers. This study delves into how these different types approach competitive and cooperative gameplay, through structured dilemmas in BartleZ. Results with 45 participants, reveal that player orientations significantly influence engagement and decision-making. Achievers balanced both strategies; Explorers favored cooperation; Socializers consistently chose cooperation; and Killers preferred competition but adapted in some contexts. Overall, players leaned toward cooperation early on, with a shift toward competition as complexity increased. Our findings pinpoint the importance of tailoring GWAP mechanics with diverse player motivations, enhancing both engagement and problem-solving effectiveness. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
2025
Autores
Charan Dande, CS; Rakhshani, E; Gümrükcü, E; Gil, AA; Manuel, N; Carta, D; Lucas, A; Benigni, A; Monti, A;
Publicação
2025 IEEE International Conference on Engineering, Technology, and Innovation (ICE/ITMC)
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.