Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Factos & Números
000
Apresentação

Centro de Robótica Industrial e Sistemas Inteligentes

No CRIIS trabalhamos em estreita colaboração com empresas, outros Institutos e Universidades, seguindo o lema da Investigação e Desenvolvimento até à Inovação, Design, Prototipagem e Implementação.

O Centro aborda as seguintes áreas de investigação principais: Navegação e Localização de Robôs Móveis, Sensores Inteligentes e Controlo de Sistemas Dinâmicos, Visão Industrial 2D/3D e Deteção Avançada, Manipuladores Móveis, Estruturas Especiais e Arquiteturas para Robôs, Interfaces de Robô-Humano e Realidade Aumentada, Robótica Industrial e Robôs Colaborativos do Futuro, Integração Vertical, IoT e Indústria 4.0.

Últimas Notícias
Robótica

INESC TEC vence Prémio Inovação Agricultura

O robô Modular-E do INESC TEC foi distinguido com o Prémio Inovação Agricultura 2024, no valor de 10 mil euros. Esta iniciativa da Timac Agro, que contou com o jornal Expresso e a SIC Notícias como media partners, tinha como objetivo promover um novo prémio de inovação no setor. Qualquer projeto de investigação na área agrícola com aplicação real, casos concretos identificados e documentados podiam concorrer. O galardão foi entregue a 26 de novembro, numa cerimónia que decorreu em Lisboa.

28 novembro 2024

INESC TEC demonstra manipulador móvel que quer “reduzir erros” e ser mais eficiente

O INESC TEC demonstrou dois casos de uso, no âmbito do projeto Moma-flex, que podem ser um “avanço significativo na automação dos processos logísticos”.

15 outubro 2024

Robótica

Semear digital: como o INESC TEC pode ajudar a tornar a agricultura mais rentável

O programa Semear Digital nasceu no Brasil, mas viajou até Portugal para ajudar os pequenos e médios agricultores e dotá-los de ferramentas para tornar a profissão mais rentável. O INESC TEC, a Embrapa, a Associação Mobilizar com Valores (MCV) e a Casa Escola Agrícola Campo Verde (CEACV) são as quatro instituições que participaram no seminário “Semear Digital no Contexto do Agro Luso-Brasileiro”, que aconteceu, em setembro, na Póvoa de Varzim.

04 outubro 2024

Investigadora INESC TEC vence competição numa Summer School de Robótica na Suíça

Maria Lopes, investigadora do INESC TEC, venceu a competição que deu fim à Summer School de Robótica organizada pelo Instituto de Federal de Tecnologia (ETH) de Zurique, na Suíça. A ETH Robotics Summer School 2024 contou, para além de uma série de sessões que tinham como objetivo ensinar os participantes conceitos fundamentais da robótica, com uma competição da área, vencida pela equipa da investigadora do INESC TEC.

15 julho 2024

Robótica

A Europa quer monitorizar e conservar as populações de insetos – e conta com o contributo do INESC TEC

Uma tecnologia, de baixo custo, que integra Inteligência Artificial (IA) baseada em imagens e que permite detetar insetos e identificar potenciais ameaças à sua existência. A MOXOH foi desenvolvida pelo INESC TEC e apresentada numa reunião de trabalho da InsectAI COST, uma ação promovida pelo programa europeu COST, que pretende acelerar o desenvolvimento de soluções baseadas em imagens e assistidas por IA para apoiar a monitorização e conservação de insetos.

12 julho 2024

001

Projetos Selecionados

PFAI4_5eD

Programa de Formação Avançada Industria 4 - 5a edição

2024-2024

Equipa
003

Laboratórios

Laboratório de Robótica Industrial e Automação

Laboratório de Robótica Móvel e Logística Interna

TRIBE - Laboratório de Robótica e IoT para Agricultura e Floresta de Precisão Inteligente

Publicações

CRIIS Publicações

Ler todas as publicações

2025

Human-in-the-loop Multi-objective Bayesian Optimization for Directed Energy Deposition with in-situ monitoring

Autores
Sousa, J; Sousa, A; Brueckner, F; Reis, LP; Reis, A;

Publicação
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING

Abstract
Directed Energy Deposition (DED) is a free-form metal additive manufacturing process characterized as toolless, flexible, and energy-efficient compared to traditional processes. However, it is a complex system with a highly dynamic nature that presents challenges for modeling and optimization due to its multiphysics and multiscale characteristics. Additionally, multiple factors such as different machine setups and materials require extensive testing through single-track depositions, which can be time and resource-intensive. Single-track experiments are the foundation for establishing optimal initial parameters and comprehensively characterizing bead geometry, ensuring the accuracy and efficiency of computer-aided design and process quality validation. We digitized a DED setup using the Robot Operating System (ROS 2) and employed a thermal camera for real-time monitoring and evaluation to streamline the experimentation process. With the laser power and velocity as inputs, we optimized the dimensions and stability of the melt pool and evaluated different objective functions and approaches using a Response Surface Model (RSM). The three-objective approach achieved better rewards in all iterations and, when implemented in areal setup, allowed to reduce the number of experiments and shorten setup time. Our approach can minimize waste, increase the quality and reliability of DED, and enhance and simplify human-process interaction by leveraging the collaboration between human knowledge and model predictions.

2025

Pollinationbots - A Swarm Robotic System for Tree Pollination

Autores
Castro, JT; Pinheiro, I; Marques, MN; Moura, P; dos Santos, FN;

Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
In nature, and particularly in agriculture, pollination is fundamental for the sustainability of our society. In this context, pollination is a vital process underlying crop yield quality and is responsible for the biodiversity and the standards of the flora. Bees play a crucial role in natural pollination; however, their populations are declining. Robots can help maintain pollination levels while humans work to recover bee populations. Swarm robotics approaches appear promising for robotic pollination. This paper proposes the cooperation between multiple Unmanned Aerial Vehicles (UAVs) and an Unmanned Ground Vehicle (UGV), leveraging the advantages of collaborative work for pollination, referred to as Pollinationbots. Pollinationbots is based in swarm behaviors and methodologies to implement more effective pollination strategies, ensuring efficient pollination across various scenarios. The paper presents the architecture of the Pollinationbots system, which was evaluated using the Webots simulator, focusing on path planning and follower behavior. Preliminary simulation results indicate that this is a viable solution for robotic pollination. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

A review of advanced controller methodologies for robotic manipulators

Autores
Tinoco, V; Silva, MF; Santos, FN; Morais, R; Magalhães, SA; Oliveira, PM;

Publicação
International Journal of Dynamics and Control

Abstract
AbstractWith the global population on the rise and a declining agricultural labor force, the realm of robotics research in agriculture, such as robotic manipulators, has assumed heightened significance. This article undertakes a comprehensive exploration of the latest advancements in controllers tailored for robotic manipulators. The investigation encompasses an examination of six distinct controller paradigms, complemented by the presentation of three exemplars for each category. These paradigms encompass: (i) adaptive control, (ii) sliding mode control, (iii) model predictive control, (iv) robust control, (v) fuzzy logic control and (vi) neural network control. The article further introduces and presents comparative tables for each controller category. These controllers excel in tracking trajectories and efficiently reaching reference points with rapid convergence. The key point of divergence among these controllers resides in their inherent complexity.

2025

Forest Fire Risk Prediction Using Machine Learning

Autores
Nogueira, JD; Pires, EJ; Reis, A; de Moura Oliveira, PB; Pereira, A; Barroso, J;

Publicação
Lecture Notes in Networks and Systems

Abstract
With the serious danger to nature and humanity that forest fires are, taken into consideration, this work aims to develop an artificial intelligence model capable of accurately predicting the forest fire risk in a certain region based on four different factors: temperature, wind speed, rain and humidity. Thus, three models were created using three different approaches: Artificial Neural Networks (ANN), Random Forest (RF), and K-Nearest Neighbor (KNN), and making use of an Algerian forest fire dataset. The ANN and RF both achieved high accuracy results of 97%, while the KNN achieved a slightly lower average of 91%. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

Grapevine inflorescence segmentation and flower estimation based on Computer Vision techniques for early yield assessment

Autores
Moreira, G; dos Santos, FN; Cunha, M;

Publicação
SMART AGRICULTURAL TECHNOLOGY

Abstract
Yield forecasting is of immeasurable value in modern viticulture to optimize harvest scheduling and quality management. The number of inflorescences and flowers per vine is one of the main components and their assessment serves as an early predictor, which can explain up to 85-90% of yield variability. This study introduces a sophisticated framework that integrates the benchmark of different advanced deep learning and classic image processing to automate the segmentation of grapevine inflorescences and the detection of single flowers, to achieve precise, early, and non-invasive yield predictions in viticulture. The YOLOv8n model achieved superior performance in localizing inflorescences ( F1-Score (Box) = 95.9%) and detecting individual flowers (F1-Score = 91.4%), while the YOLOv5n model excelled in the segmentation task ( F1-Score (Mask) = 98.6%). The models demonstrated a strong correlation (R-2 > 90.0%) between detected and visible flowers in inflorescences. A statistical analysis confirmed the robustness of the framework, with the YOLOv8 model once again standing out, showing no significant differences in error rates across diverse grapevine morphologies and varieties, ensuring wide applicability. The results demonstrate that these models can significantly improve the accuracy of early yield predictions, offering a noninvasive, scalable solution for Precision Viticulture. The findings underscore the potential for Computer Vision technology to enhance vineyard management practices, leading to better resource allocation and improved crop quality.

Factos & Números

0Capítulos de livros

2020

6Contratados de I&D

2020

22Artigos em revistas indexadas

2020