Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Apresentação

Centro de Robótica Industrial e Sistemas Inteligentes

Integrando o Cluster I+I - Indústria e Inovação, no Centro de Robótica Industrial e Sistemas Inteligentes (CRIIS) desenvolvemos e implementamos soluções inovadoras nos campos da robótica industrial e sistemas inteligentes. No CRIIS trabalhamos em estreita colaboração com empresas, outros Centros INESC TEC e outros Institutos e Universidades, seguindo o lema da Investigação e Desenvolvimento para a Inovação, Design, Prototipagem e Implementação. No Centro, abordamos as seguintes áreas de investigação principais: Navegação e Localização de Robôs Móveis, Sensores Inteligentes e Controlo de Sistemas Dinâmicos, Visão Industrial 2D/3D e Deteção Avançada, Manipuladores Móveis, Estruturas Especiais e Arquiteturas para Robôs, Interfaces de Robô-Humano e Realidade Aumentada, Robótica Industrial e Robôs Colaborativos do Futuro, Integração Vertical, IoT e Indústria 4.0.

notícias
Equipa
Publicações

CRIIS Publicações

Ler todas as publicações

2027

COGNITIVE WORKLOAD AND FATIGUE IN A HUMAN-ROBOT COLLABORATIVE ASSEMBLY WORKSTATION: A PILOT STUDY

Autores
Joana Santos; Mariana Ferraz; Ana Pinto; Luis F. Rocha; Carlos M. Costa; Ana C. Simões; Klass Bombeke; M.A.P. Vaz;

Publicação
International Symposium on Occupational Safety and Hygiene: Proceedings Book of the SHO2023

Abstract

2025

Human-in-the-loop Multi-objective Bayesian Optimization for Directed Energy Deposition with in-situ monitoring

Autores
Sousa, J; Sousa, A; Brueckner, F; Reis, LP; Reis, A;

Publicação
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING

Abstract
Directed Energy Deposition (DED) is a free-form metal additive manufacturing process characterized as toolless, flexible, and energy-efficient compared to traditional processes. However, it is a complex system with a highly dynamic nature that presents challenges for modeling and optimization due to its multiphysics and multiscale characteristics. Additionally, multiple factors such as different machine setups and materials require extensive testing through single-track depositions, which can be time and resource-intensive. Single-track experiments are the foundation for establishing optimal initial parameters and comprehensively characterizing bead geometry, ensuring the accuracy and efficiency of computer-aided design and process quality validation. We digitized a DED setup using the Robot Operating System (ROS 2) and employed a thermal camera for real-time monitoring and evaluation to streamline the experimentation process. With the laser power and velocity as inputs, we optimized the dimensions and stability of the melt pool and evaluated different objective functions and approaches using a Response Surface Model (RSM). The three-objective approach achieved better rewards in all iterations and, when implemented in areal setup, allowed to reduce the number of experiments and shorten setup time. Our approach can minimize waste, increase the quality and reliability of DED, and enhance and simplify human-process interaction by leveraging the collaboration between human knowledge and model predictions.

2025

Artificial Intelligence for Control in Laser-Based Additive Manufacturing: A Systematic Review

Autores
Sousa, J; Brandau, B; Darabi, R; Sousa, A; Brueckner, F; Reis, A; Reis, LP;

Publicação
IEEE ACCESS

Abstract
Laser-based additive manufacturing (LAM) offers the ability to produce near-net-shape metal parts with unparalleled energy efficiency and flexibility in both geometry and material selection. Despite advantages, these processes are inherently, as they are characterized by multiphysics interactions, multiscale phenomena, and highly dynamic behaviors, making their modeling and optimization particularly challenging. Artificial intelligence (AI) has emerged as a promising tool for enhancing the monitoring and control of additive manufacturing. This paper presents a systematic review of AI applications for real-time control of laser-based manufacturing processes, analyzing 16 relevant articles sourced from Scopus, IEEE Xplore, and Web of Science databases. The primary objective of this work is to contribute to the advancement of autonomous manufacturing systems capable of self-monitoring and self-correction, ensuring optimal part quality, enhanced efficiency, and reduced human intervention. Our findings indicate that 62.5 % of the 16 analyzed studies have deployed AI-driven controllers in real-world scenarios, with over 56 % using AI for control strategies, such as Reinforcement Learning. Furthermore, 62.5 % of the studies employed AI for process modeling or monitoring, which was integral to the development or data pipelines of the controllers. By defining a groundwork for future developments, this review not only highlights current advancements but also hints future innovations that will likely include AI-based controllers.

2025

Spray Quality Assessment on Water-Sensitive Paper Comparing AI and Classical Computer Vision Methods

Autores
Simoes, I; Sousa, AJ; Baltazar, A; Santos, F;

Publicação
AGRICULTURE-BASEL

Abstract
Precision agriculture seeks to optimize crop yields while minimizing resource use. A key challenge is achieving uniform pesticide spraying to prevent crop damage and environmental contamination. Water-sensitive paper (WSP) is a common tool used for assessing spray quality, as it visually registers droplet impacts through color change. This work introduces a smartphone-based solution for capturing WSP images within vegetation, offering a tool for farmers to assess spray quality in real-world conditions. To achieve this, two approaches were explored: classical computer vision techniques and machine learning (ML) models (YOLOv8, Mask-RCNN, and Cellpose). Addressing the challenges of limited real-world data and the complexity of manual annotation, a programmatically generated synthetic dataset was employed to enable sim-to-real transfer learning. For the task of WSP segmentation within vegetation, YOLOv8 achieved an average Intersection over Union of 97.76%. In the droplet detection task, which involves identifying individual droplets on WSP, Cellpose achieved the highest precision of 96.18%, in the presence of overlapping droplets. While classical computer vision techniques provided a reliable baseline, they struggled with complex cases. Additionally, ML models, particularly Cellpose, demonstrated accurate droplet detection even without fine-tuning.

2025

Collaborative fault tolerance for cyber-physical systems: The detection stage

Autores
Piardi, L; de Oliveira, AS; Costa, P; Leitao, P;

Publicação
COMPUTERS IN INDUSTRY

Abstract
In the era of Industry 4.0, fault tolerance is essential for maintaining the robustness and resilience of industrial systems facing unforeseen or undesirable disturbances. Current methodologies for fault tolerance stages namely, detection, diagnosis, and recovery, do not correspond with the accelerated technological evolution pace over the past two decades. Driven by the advent of digital technologies such as Internet of Things, cloud and edge computing, and artificial intelligence, associated with enhanced computational processing and communication capabilities, local or monolithic centralized fault tolerance methodologies are out of sync with contemporary and future systems. Consequently, these methodologies are limited in achieving the maximum benefits enabled by the integration of these technologies, such as accuracy and performance improvements. Accordingly, in this paper, a collaborative fault tolerance methodology for cyber-physical systems, named Collaborative Fault * (CF*), is proposed. The proposed methodology takes advantage of the inherent data analysis and communication capabilities of cyber-physical components. The proposed methodology is based on multi-agent system principles, where key components are self-fault tolerant, and adopts collaborative and distributed intelligence behavior when necessary to improve its fault tolerance capabilities. Experiments were conducted focusing on the fault detection stage for temperature and humidity sensors in warehouse racks. The experimental results confirmed the accuracy and performance improvements under CF* compared with the local methodology and competitiveness when compared with a centralized approach.