Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Factos & Números
000
Apresentação

Centro de Robótica Industrial e Sistemas Inteligentes

No CRIIS trabalhamos em estreita colaboração com empresas, outros Institutos e Universidades, seguindo o lema da Investigação e Desenvolvimento até à Inovação, Design, Prototipagem e Implementação.

O Centro aborda as seguintes áreas de investigação principais: Navegação e Localização de Robôs Móveis, Sensores Inteligentes e Controlo de Sistemas Dinâmicos, Visão Industrial 2D/3D e Deteção Avançada, Manipuladores Móveis, Estruturas Especiais e Arquiteturas para Robôs, Interfaces de Robô-Humano e Realidade Aumentada, Robótica Industrial e Robôs Colaborativos do Futuro, Integração Vertical, IoT e Indústria 4.0.

Últimas Notícias
Robótica

INESC TEC vence Prémio Inovação Agricultura

O robô Modular-E do INESC TEC foi distinguido com o Prémio Inovação Agricultura 2024, no valor de 10 mil euros. Esta iniciativa da Timac Agro, que contou com o jornal Expresso e a SIC Notícias como media partners, tinha como objetivo promover um novo prémio de inovação no setor. Qualquer projeto de investigação na área agrícola com aplicação real, casos concretos identificados e documentados podiam concorrer. O galardão foi entregue a 26 de novembro, numa cerimónia que decorreu em Lisboa.

28 novembro 2024

INESC TEC demonstra manipulador móvel que quer “reduzir erros” e ser mais eficiente

O INESC TEC demonstrou dois casos de uso, no âmbito do projeto Moma-flex, que podem ser um “avanço significativo na automação dos processos logísticos”.

15 outubro 2024

Robótica

Semear digital: como o INESC TEC pode ajudar a tornar a agricultura mais rentável

O programa Semear Digital nasceu no Brasil, mas viajou até Portugal para ajudar os pequenos e médios agricultores e dotá-los de ferramentas para tornar a profissão mais rentável. O INESC TEC, a Embrapa, a Associação Mobilizar com Valores (MCV) e a Casa Escola Agrícola Campo Verde (CEACV) são as quatro instituições que participaram no seminário “Semear Digital no Contexto do Agro Luso-Brasileiro”, que aconteceu, em setembro, na Póvoa de Varzim.

04 outubro 2024

Investigadora INESC TEC vence competição numa Summer School de Robótica na Suíça

Maria Lopes, investigadora do INESC TEC, venceu a competição que deu fim à Summer School de Robótica organizada pelo Instituto de Federal de Tecnologia (ETH) de Zurique, na Suíça. A ETH Robotics Summer School 2024 contou, para além de uma série de sessões que tinham como objetivo ensinar os participantes conceitos fundamentais da robótica, com uma competição da área, vencida pela equipa da investigadora do INESC TEC.

15 julho 2024

Robótica

A Europa quer monitorizar e conservar as populações de insetos – e conta com o contributo do INESC TEC

Uma tecnologia, de baixo custo, que integra Inteligência Artificial (IA) baseada em imagens e que permite detetar insetos e identificar potenciais ameaças à sua existência. A MOXOH foi desenvolvida pelo INESC TEC e apresentada numa reunião de trabalho da InsectAI COST, uma ação promovida pelo programa europeu COST, que pretende acelerar o desenvolvimento de soluções baseadas em imagens e assistidas por IA para apoiar a monitorização e conservação de insetos.

12 julho 2024

001

Projetos Selecionados

PFAI4_5eD

Programa de Formação Avançada Industria 4 - 5a edição

2024-2024

Equipa
003

Laboratórios

Laboratório de Robótica Industrial e Automação

Laboratório de Robótica Móvel e Logística Interna

TRIBE - Laboratório de Robótica e IoT para Agricultura e Floresta de Precisão Inteligente

Publicações

CRIIS Publicações

Ler todas as publicações

2025

Pruning End-Effectors State of the Art Review

Autores
Oliveira, F; Tinoco, V; Valente, A; Pinho, T; Cunha, JB; Santos, N;

Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
Pruning consists on an agricultural trimming procedure that is crucial in some species of plants to promote healthy growth and increased yield. Generally, this task is done through manual labour, which is costly, physically demanding, and potentially dangerous for the worker. Robotic pruning is an automated alternative approach to manual labour on this task. This approach focuses on selective pruning and requires the existence of an end-effector capable of detecting and cutting the correct point on the branch to achieve efficient pruning. This paper reviews and analyses different end-effectors used in robotic pruning, which helped to understand the advantages and limitations of the different techniques used and, subsequently, clarified the work required to enable autonomous pruning. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

Pollinationbots - A Swarm Robotic System for Tree Pollination

Autores
Castro, JT; Pinheiro, I; Marques, MN; Moura, P; dos Santos, FN;

Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
In nature, and particularly in agriculture, pollination is fundamental for the sustainability of our society. In this context, pollination is a vital process underlying crop yield quality and is responsible for the biodiversity and the standards of the flora. Bees play a crucial role in natural pollination; however, their populations are declining. Robots can help maintain pollination levels while humans work to recover bee populations. Swarm robotics approaches appear promising for robotic pollination. This paper proposes the cooperation between multiple Unmanned Aerial Vehicles (UAVs) and an Unmanned Ground Vehicle (UGV), leveraging the advantages of collaborative work for pollination, referred to as Pollinationbots. Pollinationbots is based in swarm behaviors and methodologies to implement more effective pollination strategies, ensuring efficient pollination across various scenarios. The paper presents the architecture of the Pollinationbots system, which was evaluated using the Webots simulator, focusing on path planning and follower behavior. Preliminary simulation results indicate that this is a viable solution for robotic pollination. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

Forest Fire Risk Prediction Using Machine Learning

Autores
Nogueira, JD; Pires, EJ; Reis, A; de Moura Oliveira, PB; Pereira, A; Barroso, J;

Publicação
Lecture Notes in Networks and Systems

Abstract
With the serious danger to nature and humanity that forest fires are, taken into consideration, this work aims to develop an artificial intelligence model capable of accurately predicting the forest fire risk in a certain region based on four different factors: temperature, wind speed, rain and humidity. Thus, three models were created using three different approaches: Artificial Neural Networks (ANN), Random Forest (RF), and K-Nearest Neighbor (KNN), and making use of an Algerian forest fire dataset. The ANN and RF both achieved high accuracy results of 97%, while the KNN achieved a slightly lower average of 91%. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2024

Inspection of Part Placement Within Containers Using Point Cloud Overlap Analysis for an Automotive Production Line

Autores
Costa C.M.; Dias J.; Nascimento R.; Rocha C.; Veiga G.; Sousa A.; Thomas U.; Rocha L.;

Publicação
Lecture Notes in Mechanical Engineering

Abstract
Reliable operation of production lines without unscheduled disruptions is of paramount importance for ensuring the proper operation of automated working cells involving robotic systems. This article addresses the issue of preventing disruptions to an automotive production line that can arise from incorrect placement of aluminum car parts by a human operator in a feeding container with 4 indexing pins for each part. The detection of the misplaced parts is critical for avoiding collisions between the containers and a high pressure washing machine and also to avoid collisions between the parts and a robotic arm that is feeding parts to a air leakage inspection machine. The proposed inspection system relies on a 3D sensor for scanning the parts inside a container and then estimates the 6 DoF pose of the container followed by an analysis of the overlap percentage between each part reference point cloud and the 3D sensor data. When the overlap percentage is below a given threshold, the part is considered as misplaced and the operator is alerted to fix the part placement in the container. The deployment of the inspection system on an automotive production line for 22 weeks has shown promising results by avoiding 18 hours of disruptions, since it detected 407 containers having misplaced parts in 4524 inspections, from which 12 were false negatives, while no false positives were reported, which allowed the elimination of disruptions to the production line at the cost of manual reinspection of 0.27% of false negative containers by the operator.

2024

Assessing Soil Ripping Depth for Precision Forestry with a Cost-Effective Contactless Sensing System

Autores
da Silva, DQ; Louro, F; dos Santos, FN; Filipe, V; Sousa, AJ; Cunha, M; Carvalho, JL;

Publicação
ROBOT 2023: SIXTH IBERIAN ROBOTICS CONFERENCE, VOL 2

Abstract
Forest soil ripping is a practice that involves revolving the soil in a forest area to prepare it for planting or sowing operations. Advanced sensing systems may help in this kind of forestry operation to assure ideal ripping depth and intensity, as these are important aspects that have potential to minimise the environmental impact of forest soil ripping. In this work, a cost-effective contactless system - capable of detecting and mapping soil ripping depth in real-time - was developed and tested in laboratory and in a realistic forest scenario. The proposed system integrates two single-point LiDARs and a GNSS sensor. To evaluate the system, ground-truth data was manually collected on the field during the operation of the machine with a ripping implement. The proposed solution was tested in real conditions, and the results showed that the ripping depth was estimated with minimal error. The accuracy and mapping ripping depth ability of the low-cost sensor justify their use to support improved soil preparation with machines or robots toward sustainable forest industry.

Factos & Números

24Investigadores Séniores

2016

39Investigadores

2016

19Artigos em conferências indexadas

2020