Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Alberto A. Pinto é professor Catedrático do Departamento de Matemática, Faculdade de Ciências, Universidade do Porto (Portugal). É investigador no Laboratório de Inteligência Artificial e Apoio à Decisão (LIAAD) do INESC TEC.

Foi o fundador e é actualmente o co-editor-em-chefe, juntamente com Michel Benaim da Université de Neuchatel, Suiça, do Journal of Dynamics and Games, publicado pelo American Institute of Mathematical Sciences (AIMS). Foi presidente do Centro Internacional de Matemática (CIM) de 2011 a 2016. Desde 2016 preside à Assembleia Geral do CIM.

Alberto Pinto iniciou a sua carreira científica sob a orientação de David Rand (U Warwick, UK).  Na sua tese de mestrado (1989) estudou os trabalhos de Feigenbaum e Sullivan em funções scaling. Continuando os seus trabalhos sob a orientação de David Rand, estudo na sua tese de doutoramento (1991) características de universalidade de outras classes de aplicações que formam a fronteira entre ordem e caos.

Durante esse período, Alberto Pinto conheceu vários investigadores de topo na área de Sistemas Dinâmicos, nomeadamente Dennis Sullivan (Stony Brook, NY, EUA) e Mauricio Peixoto (IMPA, Brasil), e isso teve um grande impacto na sua carreira. Como resultado, ele e seus colaboradores fizeram várias contribuições importantes para o estudo da estrutura em escala fina de sistemas dinâmicos, tendo esses trabalhos sido publicados em destacados jornais científicos internacionais e no livro Fine Structures of Hyperbolic Diffeomorphisms  em co-autoria com Flávio Ferreira e David Rand, publicado na prestigiada série Springer Monographs in Mathematics, da Springer Verlag.

Enquanto realizava um pós-doutoramento sob a supervisão de Dennis Sullivan no Graduate Center da City University of New York (CUNY), conheceu Edson de Faria e, através de Mauricio Peixoto, entrou em contato com Welington de Melo. Com de Melo provou a rigidez de aplicações unimodais suaves na fronteira entre caos e ordem, estendendo o trabalho de C. T McMullen (UHarvard), laureado em 1998 com a Medalha Fields. Conjuntamente com Edson de Faria e Welington de Melo, Alberto Pinto provou uma conjectura de Feigenbaum e Coullet-Tresser que caracteriza a duplicação do período entre o caos e a ordem para aplicações unimodais. Este resultado surge no artigo Global Hyperbolicity of Renormalization for Smooth Unimodal Mappings publicado na revista Annals of Mathematics (2006) e teve como base resultados anteriores de Sandy Davie, Dennis Sullivan, Curtis McMullen e Mikhail Lyubich.

Desde então, Alberto Pinto alargou os seus interesse de investigação a áreas mais aplicadas da Matemática, tendo feito contribuições em vastas e variadas incluindo ótica, teoria dos jogos e economia matemática, finanças, imunologia, epidemiologia e clima e energia. Nessas áreas aplicadas, ele publicou amplamente ultrapassando os cem artigos científicos.

Alberto pinto editou dois volumes, com Mauricio Peixoto e David Rand, Dynamics and Games I and II (2011). Estes dois volumes iniciaram a nova série Springer Proceedings in Mathematics. Com David Zilberman (U Berkeley) editou os  volumes Modeling, Dynamics, Optimization and Bioeconomics I and II (2015, 2017) também na série Springer Proceedings in Mathematics & Statistics. Ainda na mesma série editou conjuntamente com Lluís Alsedà, Jim Cushing e Saber Elaydi, o livro Difference Equations, Discrete Dynamical Systems and Applications.

Enquanto presidente do CIM,  editou conjuntamente com Jean-Pierre Bourguignon (European Research Council-ERC), Rolf Jeltsch (ETH-Zurich) e Marcelo Viana (IMPA), os livros Dynamics, Games and Science e Mathematics of Planet Earth que iniciaram a CIM Series in Mathematical Sciences, publicado pela Springer Verlag.  Na mesma série, editou com J.F. Oliveira e J.P. Almeida o livro Operational Research. Na área da Economia Matemática, editou com Elvio Accinelli Gamba, Athanasios N. Yannacopoulos e Carlos Hervés-Beloso, o livro Trends in Mathematical Economics (2017), também publicado pela Springer Verlag.

Alberto Pinto desempenhou ainda funções como membro da Direção do projeto Internacional Pobabilistic Methods in Non-Hyperbolic Dynamics (PRODYN), financiado pela European Science Foundation (1999-2001). Desempenhou ainda funções como Coordenador Executivo (2009-2010) do Conselho Científico de Ciências Exatas e Engenharia da Fundação para Ciência e Tecnologia.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Alberto Pinto
  • Cargo

    Investigador Coordenador
  • Desde

    01 maio 2011
003
Publicações

2025

The Application of Machine Learning and Deep Learning with a Multi-Criteria Decision Analysis for Pedestrian Modeling: A Systematic Literature Review (1999-2023)

Autores
Reyes-Norambuena, P; Pinto, AA; Martínez, J; Yazdi, AK; Tan, Y;

Publicação
SUSTAINABILITY

Abstract
Among transportation researchers, pedestrian issues are highly significant, and various solutions have been proposed to address these challenges. These approaches include Multi-Criteria Decision Analysis (MCDA) and machine learning (ML) techniques, often categorized into two primary types. While previous studies have addressed diverse methods and transportation issues, this research integrates pedestrian modeling with MCDA and ML approaches. This paper examines how MCDA and ML can be combined to enhance decision-making in pedestrian dynamics. Drawing on a review of 1574 papers published from 1999 to 2023, this study identifies prevalent themes and methodologies in MCDA, ML, and pedestrian modeling. The MCDA methods are categorized into weighting and ranking techniques, with an emphasis on their application to complex transportation challenges involving both qualitative and quantitative criteria. The findings suggest that hybrid MCDA algorithms can effectively evaluate ML performance, addressing the limitations of traditional methods. By synthesizing the insights from the existing literature, this review outlines key methodologies and provides a roadmap for future research in integrating MCDA and ML in pedestrian dynamics. This research aims to deepen the understanding of how informed decision-making can enhance urban environments and improve pedestrian safety.

2024

Optimal consumption, investment and life-insurance purchase under a stochastically fluctuating economy

Autores
Mousa, AS; Pinheiro, D; Pinheiro, S; Pinto, AA;

Publicação
OPTIMIZATION

Abstract
We study the optimal consumption, investment and life-insurance purchase and selection strategies for a wage-earner with an uncertain lifetime with access to a financial market comprised of one risk-free security and one risky-asset whose prices evolve according to linear diffusions modulated by a continuous-time stochastic process determined by an additional diffusive nonlinear stochastic differential equation. The process modulating the linear diffusions may be regarded as an indicator describing the state of the economy in a given instant of time. Additionally, we allow the Brownian motions driving each of these equations to be correlated. The life-insurance market under consideration herein consists of a fixed number of providers offering pairwise distinct contracts. We use dynamic programming techniques to characterize the solutions to the problem described above for a general family of utility functions, studying the case of discounted constant relative risk aversion utilities with more detail.

2024

Barrett's paradox of cooperation in the case of quasi-linear utilities

Autores
Accinelli, E; Afsar, A; Martins, F; Martins, J; Oliveira, BMPM; Oviedo, J; Pinto, AA; Quintas, L;

Publicação
MATHEMATICAL METHODS IN THE APPLIED SCIENCES

Abstract
This paper fits in the theory of international agreements by studying the success of stable coalitions of agents seeking the preservation of a public good. Extending Baliga and Maskin, we consider a model of N homogeneous agents with quasi-linear utilities of the form u(j) (r(j); r) = r(alpha) - r(j), where r is the aggregate contribution and the exponent alpha is the elasticity of the gross utility. When the value of the elasticity alpha increases in its natural range (0, 1), we prove the following five main results in the formation of stable coalitions: (i) the gap of cooperation, characterized as the ratio of the welfare of the grand coalition to the welfare of the competitive singleton coalition grows to infinity, which we interpret as a measure of the urge or need to save the public good; (ii) the size of stable coalitions increases from 1 up to N; (iii) the ratio of the welfare of stable coalitions to the welfare of the competitive singleton coalition grows to infinity; (iv) the ratio of the welfare of stable coalitions to the welfare of the grand coalition decreases (a lot), up to when the number of members of the stable coalition is approximately N/e and after that it increases (a lot); and (v) the growth of stable coalitions occurs with a much greater loss of the coalition members when compared with free-riders. Result (v) has two major drawbacks: (a) A priori, it is difficult to convince agents to be members of the stable coalition and (b) together with results (i) and (iv), it explains and leads to the pessimistic Barrett's paradox of cooperation, even in a case not much considered in the literature: The ratio of the welfare of the stable coalitions against the welfare of the grand coalition is small, even in the extreme case where there are few (or a single) free-riders and the gap of cooperation is large. Optimistically, result (iii) shows that stable coalitions do much better than the competitive singleton coalition. Furthermore, result (ii) proves that the paradox of cooperation is resolved for larger values of.. so that the grand coalition is stabilized.

2024

Game Theory for Predicting Stocks' Closing Prices

Autores
Freitas, JC; Pinto, AA; Felgueiras, O;

Publicação
MATHEMATICS

Abstract
We model the financial markets as a game and make predictions using Markov chain estimators. We extract the possible patterns displayed by the financial markets, define a game where one of the players is the speculator, whose strategies depend on his/her risk-to-reward preferences, and the market is the other player, whose strategies are the previously observed patterns. Then, we estimate the market's mixed probabilities by defining Markov chains and utilizing its transition matrices. Afterwards, we use these probabilities to determine which is the optimal strategy for the speculator. Finally, we apply these models to real-time market data to determine its feasibility. From this, we obtained a model for the financial markets that has a good performance in terms of accuracy and profitability.

2024

Bounded Rational Players in a Symmetric Random Exchange Market

Autores
Yusuf, A; Oliveira, B; Pinto, A; Yannacopoulos, AN;

Publicação
MATHEMATICS

Abstract
A model of Edgeworthian economies is studied, in which participants are randomly chosen at each period to exchange two goods to increase their utilities, as described by the Cobb-Douglas utility function. Participants can trade deviating from their bilateral equilibrium, provided that the market and the trade follow appropriate symmetry conditions. The article aims to study the convergence to equilibrium in a situation where individuals or small groups of participants trade in a market, and prices are determined by interactions between the participants rather than by demand and supply alone. A dynamic matching and bargaining game is considered, with statistical duality imposed on the market game, ensuring that each participant has a counterpart with opposite preferences. This guaranties that there is sufficient incentive for trade. It is shown that, in each period, the expected logarithm of the trading price in the Edgeworthian economy equals the expected Walrasian price. This demonstrates that, under symmetry conditions, the trading price in the Edgeworthian economy is related to the Walrasian price, indicating convergence of the trading price in the Edgeworthian economy towards the Walrasian price. The study suggests that, under the right conditions, the decentralized trading model leads to price convergence similar to what would be expected in a more classical Walrasian economy, where prices balance demand and supply.

Teses
supervisionadas

2023

Estimação do Parâmetro de Dispersão em Modelos de Contagens

Autor
Rui Manuel da Costa Miranda

Instituição
UP-FCUP

2023

Time series Forecasting using a Game Theoretical Decision Model with Estimators obtained by Machine Learning Techniques

Autor
João Filipe Costa Freitas

Instituição
UP-FCUP

2023

Demand forecast in fashion retail

Autor
António Miguel Arantes da Silva

Instituição
UP-FCUP

2022

Applications of Game Theory and Dynamical Systems to Biology and Economy

Autor
Atefeh Afsar

Instituição
UP-FCUP

2021

Applications of game theory and dynamical systems on biology and economy

Autor
Atefeh Afsar

Instituição
UP-FCUP