Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

ÁREAS DE ESPECIALIZAÇÃO: Operations Management, Discrete Production, Supply Chain Management, Simulation and Optimization of Production Systems.

Mestre em Engenharia Eletrotécnica e de Computadores pela FEUP.

Experiência no desenvolvimento de modelos de simulação para apoio à decisão no desenho de layouts, dimensionamento e validação de sistemas logísticos e desenho e gestão de cadeias de abastecimento. 

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Ana Carolina Tavares
  • Cargo

    Investigador
  • Desde

    08 dezembro 2021
004
Publicações

2023

A Simulation Approach for the Design of More Sustainable and Resilient Supply Chains in the Pharmaceutical Industry

Autores
Silva, AC; Marques, CM; de Sousa, JP;

Publicação
SUSTAINABILITY

Abstract
In a world facing unprecedented challenges, such as climate changes and growing social problems, the pharmaceutical industry must ensure that its supply chains are environmentally sustainable and resilient, guaranteeing access to key medications even when faced with unanticipated disruptions or crises. The core goal of this work is to develop an innovative simulation-based approach to support more informed and effective decision making, while establishing reasonable trade-offs between supply chain robustness and resiliency, operational efficiency, and environmental and social concerns. Such a decision-support system will contribute to the development of more resilient and sustainable pharmaceutical supply chains, which are, in general, critical for maintaining access to essential medicines, especially during times of crises or relevant disruptions. The system will help companies to better manage and design their supply chains, providing a valuable tool to achieve higher levels of resilience and sustainability. The study we conducted has two primary contributions that are noteworthy. Firstly, we present a new advanced approach that integrates multiple simulation techniques, allowing for the modeling of highly complex environments. Secondly, we introduce a new conceptual framework that helps to comprehend the interplay between resiliency and sustainability in decision-making processes. These two contributions provide valuable insights into understanding complex systems and can aid in designing more resilient and sustainable systems.

2022

Supply Chain Resiliency in the Pharmaceutical Industry – a Simulation-Based Approach

Autores
da Silva, ACT; de Sousa, JP; Marques, CM;

Publicação
Proceedings of the International Conference on Industrial Engineering and Operations Management

Abstract