Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Ana Cláudia Teixeira
  • Cargo

    Assistente de Investigação
  • Desde

    09 março 2022
Publicações

2024

Synthetic Aperture Radar in Vineyard Monitoring: Examples, Demonstrations, and Future Perspectives

Autores
Bakon, M; Teixeira, AC; Padua, L; Morais, R; Papco, J; Kubica, L; Rovnak, M; Perissin, D; Sousa, JJ;

Publicação
REMOTE SENSING

Abstract
Synthetic aperture radar (SAR) technology has emerged as a pivotal tool in viticulture, offering unique capabilities for various applications. This study provides a comprehensive overview of the current state-of-the-art applications of SAR in viticulture, highlighting its significance in addressing key challenges and enhancing viticultural practices. The historical evolution and motivations behind SAR technology are also provided, along with a demonstration of its applications within viticulture, showcasing its effectiveness in various aspects of vineyard management, including delineating vineyard boundaries, assessing grapevine health, and optimizing irrigation strategies. Furthermore, future perspectives and trends in SAR applications in viticulture are discussed, including advancements in SAR technology, integration with other remote sensing techniques, and the potential for enhanced data analytics and decision support systems. Through this article, a comprehensive understanding of the role of SAR in viticulture is provided, along with inspiration for future research endeavors in this rapidly evolving field, contributing to the sustainable development and optimization of vineyard management practices.

2024

InSAR Analysis of Partially Coherent Targets in a Subsidence Deformation: A Case Study of Maceió

Autores
Teixeira, AC; Bakon, M; Perissin, D; Sousa, JJ;

Publicação
REMOTE SENSING

Abstract
Since the 1970s, extensive halite extraction in Macei & oacute;, Brazil, has resulted in significant geological risks, including ground collapses, sinkholes, and infrastructure damage. These risks became particularly evident in 2018, following an earthquake, which prompted the cessation of mining activities in 2019. This study investigates subsidence deformation resulting from these mining operations, focusing on the collapse of Mine 18 on 10 December 2023. We utilized the Quasi-Persistent Scatterer Interferometric Synthetic Aperture Radar (QPS-InSAR) technique to analyze a dataset of 145 Sentinel-1A images acquired between June 2019 and April 2024. Our approach enabled the analysis of cumulative displacement, the loss of amplitude stability, the evolution of amplitude time series, and the amplitude change matrix of targets near Mine 18. The study introduces an innovative QPS-InSAR approach that integrates phase and amplitude information using amplitude time series to assess the lifecycle of radar scattering targets throughout the monitoring period. This method allows for effective change detection following sudden events, enabling the identification of affected areas. Our findings indicate a maximum cumulative displacement of -1750 mm, with significant amplitude changes detected between late November and early December 2023, coinciding with the mine collapse. This research provides a comprehensive assessment of deformation trends and ground stability in the affected mining areas, providing valuable insights for future monitoring and risk mitigation efforts.

2023

A Systematic Review on Automatic Insect Detection Using Deep Learning

Autores
Teixeira, AC; Ribeiro, J; Morais, R; Sousa, JJ; Cunha, A;

Publicação
AGRICULTURE-BASEL

Abstract
Globally, insect pests are the primary reason for reduced crop yield and quality. Although pesticides are commonly used to control and eliminate these pests, they can have adverse effects on the environment, human health, and natural resources. As an alternative, integrated pest management has been devised to enhance insect pest control, decrease the excessive use of pesticides, and enhance the output and quality of crops. With the improvements in artificial intelligence technologies, several applications have emerged in the agricultural context, including automatic detection, monitoring, and identification of insects. The purpose of this article is to outline the leading techniques for the automated detection of insects, highlighting the most successful approaches and methodologies while also drawing attention to the remaining challenges and gaps in this area. The aim is to furnish the reader with an overview of the major developments in this field. This study analysed 92 studies published between 2016 and 2022 on the automatic detection of insects in traps using deep learning techniques. The search was conducted on six electronic databases, and 36 articles met the inclusion criteria. The inclusion criteria were studies that applied deep learning techniques for insect classification, counting, and detection, written in English. The selection process involved analysing the title, keywords, and abstract of each study, resulting in the exclusion of 33 articles. The remaining 36 articles included 12 for the classification task and 24 for the detection task. Two main approaches-standard and adaptable-for insect detection were identified, with various architectures and detectors. The accuracy of the classification was found to be most influenced by dataset size, while detection was significantly affected by the number of classes and dataset size. The study also highlights two challenges and recommendations, namely, dataset characteristics (such as unbalanced classes and incomplete annotation) and methodologies (such as the limitations of algorithms for small objects and the lack of information about small insects). To overcome these challenges, further research is recommended to improve insect pest management practices. This research should focus on addressing the limitations and challenges identified in this article to ensure more effective insect pest management.

2023

Segmentation as a Pre-processing for Automatic Grape Moths Detection

Autores
Teixeira, AC; Carneiro, GA; Morais, R; Sousa, JJ; Cunha, A;

Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT II

Abstract
Grape moths are a significant pest in vineyards, causing damage and losses in wine production. Pheromone traps are used to monitor grape moth populations and determine their developmental status to make informed decisions regarding pest control. Smart pest monitoring systems that employ sensors, cameras, and artificial intelligence algorithms are becoming increasingly popular due to their ability to streamline the monitoring process. In this study, we investigate the effectiveness of using segmentation as a pre-processing step to improve the detection of grape moths in trap images using deep learning models. We train two segmentation models, the U-Net architecture with ResNet18 and InceptionV3 backbonesl, and utilize the segmented and non-segmented images in the YOLOv5s and YOLOv8s detectors to evaluate the impact of segmentation on detection. Our results show that segmentation preprocessing can significantly improve detection by 3% for YOLOv5 and 1.2% for YOLOv8. These findings highlight the potential of segmentation pre-processing for enhancing insect detection in smart pest monitoring systems, paving the way for further exploration of different training methods.

2023

AUTOMATIC IDENTIFICATION OF PUBLIC LIGHTING FAILURES IN SATELLITE IMAGES: A CASE STUDY IN SEVILLE, SPAIN

Autores
Teixeira, AC; Batista, L; Carneiro, G; Cunha, A; Sousa, JJ;

Publicação
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM

Abstract
Public lighting is crucial for maintaining the safety and well-being of communities. Current inspection methods involve examining the luminaires during the day, but this approach has drawbacks, including energy consumption, delay in detecting issues, and high costs and time investment. Utilising deep learning based automatic detection is an advanced method that can be used for identifying and locating issues in this field. This study aims to use deep learning to automatically detect burnt-out street lights, using Seville (Spain) as a case study. The study uses high-resolution night time imagery from the JL1-3B satellite to create a dataset called NLight, which is then divided into three subsets: NL1, NL2, and NT. The NL1 and NL2 datasets are used to train and evaluate YOLOv5 and YOLOv7 segmentation models for instance segmentation of streets. And then, distance outliers were detected to find the lights off. Finally, the NT dataset is used to evaluate the effectiveness of the proposed methodology. The study finds that YOLOv5 achieved a mask mAP of 57.7%, and the proposed methodology had a precision of 30.8% and a recall of 28.3%. The main goal of this work is accomplished, but there is still space for future work to improve the methodology.