Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

André Coelho obteve um doutoramento em Telecomunicações em 2023 e um mestrado em Engenharia Eletrotécnica e de Computadores em 2016, ambos pela Universidade do Porto, Portugal. Atualmente, é investigador no grupo de investigação de Redes Sem Fios (WiN) do Centro de Telecomunicações e Multimédia (CTM) do INESC TEC.

Desde que se juntou ao INESC TEC em 2015, André Coelho tem estado ativamente envolvido em vários projetos de investigação nacionais e europeus, incluindo NEXUS, PRODUTECH R3, Test Bed 5G & Digital Transformation, CONVERGE, OVERWATCH, ResponDrone, InterConnect, RAWFIE, WISE, 5Go e CHIC. Também fez parte da equipa de orientação de mais de 20 estudantes de mestrado e licenciatura.

Os seus interesses de investigação incluem a gestão de recursos de comunicações para garantias de Qualidade de Serviço em redes sem fios emergentes. Tem um interesse especial em redes voadoras formadas por Veículos Aéreos Não Tripulados (UAVs).

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    André Filipe Coelho
  • Cargo

    Investigador Auxiliar
  • Desde

    02 novembro 2015
  • Nacionalidade

    Portugal
  • Contactos

    +351222094299
    andre.f.coelho@inesctec.pt
007
Publicações

2024

Autonomous Control and Positioning of a Mobile Radio Access Node Employing the O-RAN Architecture

Autores
Queirós, G; Correia, P; Coelho, A; Ricardo, M;

Publicação
2024 19TH WIRELESS ON-DEMAND NETWORK SYSTEMS AND SERVICES CONFERENCE, WONS

Abstract
Over the years, mobile networks were deployed using monolithic hardware based on proprietary solutions. Recently, the concept of open Radio Access Networks (RANs), including the standards and specifications from O-RAN Alliance, has emerged. It aims at enabling open, interoperable networks based on independent virtualized components connected through open interfaces. This paves the way to collect metrics and to control the RAN components by means of software applications such as the O-RAN-specified xApps. We propose a private standalone network leveraged by a mobile RAN employing the O-RAN architecture. The mobile RAN consists of a radio node (gNB) carried by a Mobile Robotic Platform autonomously positioned to provide on-demand wireless connectivity. The proposed solution employs a novel Mobility Management xApp to collect and process metrics from the RAN, while using an original algorithm to define the placement of the mobile RAN. This allows for the improvement of the connectivity offered to the User Equipments.

2023

Traffic-aware gateway placement and queue management in flying networks

Autores
Coelho, A; Campos, R; Ricardo, M;

Publicação
AD HOC NETWORKS

Abstract
Unmanned Aerial Vehicles (UAVs) have emerged as adequate platforms to carry communications nodes, including Wi-Fi Access Points and cellular Base Stations. This has led to the concept of flying networks composed of UAVs as a flexible and agile solution to provide on-demand wireless connectivity anytime, anywhere. However, state of the art works have been focused on optimizing the placement of the access network providing connectivity to ground users, overlooking the backhaul network design. In order to improve the overall Quality of Service (QoS) offered to ground users, the placement of Flying Gateways (FGWs) and the size of the queues configured in the UAVs need to be carefully defined to meet strict performance requirements. The main contribution of this article is a traffic-aware gateway placement and queue management (GPQM) algorithm for flying networks. GPQM takes advantage of knowing in advance the positions of the UAVs and their traffic demand to determine the FGW position and the queue size of the UAVs, in order to maximize the aggregate throughput and provide stochastic delay guarantees. GPQM is evaluated by means of ns-3 simulations, considering a realistic wireless channel model. The results demonstrate significant gains in the QoS offered when GPQM is used.

2023

UAV-Assisted Wireless Communications: An Experimental Analysis of A2G and G2A Channels

Autores
Shafafi, K; Almeida, EN; Coelho, A; Fontes, H; Ricardo, M; Campos, R;

Publicação
Simulation Tools and Techniques - 15th EAI International Conference, SIMUtools 2023, Seville, Spain, December 14-15, 2023, Proceedings

Abstract
Unmanned Aerial Vehicles (UAVs) offer promising potential as communications node carriers, providing on-demand wireless connectivity to users. While existing literature presents various wireless channel models, it often overlooks the impact of UAV heading. This paper provides an experimental characterization of the Air-to-Ground (A2G) and Ground-to-Air (G2A) wireless channels in an open environment with no obstacles nor interference, considering the distance and the UAV heading. We analyze the received signal strength indicator and the TCP throughput between a ground user and a UAV, covering distances between 50 m and 500 m, and considering different UAV headings. Additionally, we characterize the antenna’s radiation pattern based on UAV headings. The paper provides valuable perspectives on the capabilities of UAVs in offering on-demand and dynamic wireless connectivity, as well as highlights the significance of considering UAV heading and antenna configurations in real-world scenarios. © ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024.

2022

ResponDrone - A Situation Awareness Platform for First Responders

Autores
Friedrich, M; Lieb, TJ; Temme, A; Almeida, EN; Coelho, A; Fontes, H;

Publicação
AIAA/IEEE Digital Avionics Systems Conference - Proceedings

Abstract
Short reaction times are among the most important factors in preventing casualties or providing first assistance to potential victims during large scale natural disasters. Consequently, first response teams must quickly gain a comprehensive overview and thus situation awareness of the disaster situation. To address this challenge, the ResponDrone-platform was developed within the scope of the ResponDrone project. A fleet of unmanned aerial vehicles provides critical information from the disaster site to the first response teams in real-time and can act as a communications relays in areas with disrupted communications infrastructure. The unmanned aerial vehicles are commanded via a web-based multi-mission control system. Data sharing between the individual components is realized via a web-based cloud platform. The ResponDrone platform's capabilities were successfully tested and validated within the scope of several flight and simulation trials. This paper describes the components that were developed, integrated into a system-of-systems and demonstrated during the ResponDrone project and explains how the components work together in order to execute task-based multi-UAV missions. Further, the results of the validation trials are presented and an outlook on the next steps for further exploitation of the ResponDrone platform is given. © 2022 IEEE.

2022

Obstacle-aware On-demand 5G Network using a Mobile Robotic Platform

Autores
Maia, D; Coelho, A; Ricardo, M;

Publicação
2022 18TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS (WIMOB)

Abstract
5G has become increasingly popular nowadays, mainly due to its characteristics which enable high data rates and low latency. At the same time, mobile robotic platforms, such as drones and robots, appeared as suitable platforms to carry radio stations, enabling the on-demand placement of 5G communications cells. The main contribution of this paper is an obstacle-aware on-demand 5G network. The proposed solution consists of a 5G radio station (gNB) carried by a mobile robotic platform capable of providing obstacle-aware wireless connectivity to 5G User Equipments (UEs), leveraged by a novel virtual network function - On-Demand Mobility Management Function (ODMMF). ODMMF is designed to integrate the 5G Core network and it allows to monitor the radio conditions provided to the served UEs, while enabling the positioning of the mobile robotic platform remotely by taking advantage of the visual information provided by on-board video cameras. The proposed solution was validated using an experimental prototype, under a representative networking scenario.

Teses
supervisionadas

2022

Slicing-Aware Flying Communications Network

Autor
João Cristiano Mourão Rodrigues

Instituição
UP-FEUP

2020

Gateway Positioning in Flying Networks

Autor
Hugo Daniel Teixeira Rodrigues

Instituição
UP-FEUP

2019

Using Machine Learning to Improve Performance of Flying Networks

Autor
Baltasar de Vasconcelos Dias Aroso

Instituição
UP-FEUP

2017

Dosimetric effects of clinical setup mismatch in Volumetric Modulated Arc Therapy as assessed by Monte Carlo methods

Autor
Ricardo José Pires Magalhães

Instituição
UP-FCUP