Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    António José Oliveira
  • Cargo

    Assistente de Investigação
  • Desde

    10 setembro 2020
Publicações

2024

Probabilistic Positioning of a Mooring Cable in Sonar Images for In-Situ Calibration of Marine Sensors

Autores
Oliveira, AJ; Ferreira, BM; Cruz, NA; Diamant, R;

Publicação
IEEE TRANSACTIONS ON MOBILE COMPUTING

Abstract
The calibration of sensors stationed along a cable in marine observatories is a time-consuming and expensive operation that involves taking the mooring out of the water periodically. In this paper, we present a method that allows an underwater vehicle to approach a mooring, in order to take reference measurements along the cable for in-situ sensor calibration. We use the vehicle's Mechanically Scanned Imaging Sonar (MSIS) to identify the cable's reflection within the sonar image. After pre-processing the image to remove noise, enhance contour lines, and perform smoothing, we employ three detection steps: 1) selection of regions of interest that fit the cable's reflection pattern, 2) template matching, and 3) a track-before-detect scheme that utilized the vehicle's motion. The later involves building a lattice of template matching responses for a sequence of sonar images, and using the Viterbi algorithm to find the most probable sequence of cable locations that fits the maximum speed assumed for the surveying vessel. Performance is explored in pool and sea trials, and involves an MSIS onboard an underwater vehicle scanning its surrounding to identify a steel-core cable. The results show a sub-meter accuracy in the multi-reverberant pool environment and in the sea trial. For reproducibility, we share our implementation code.

2023

Feature Extraction Towards Underwater SLAM using Imaging Sonar

Autores
Oliveira, AJ; Ferreira, BM; Cruz, NA;

Publicação
OCEANS 2023 - LIMERICK

Abstract
Blob features are particularly common in acoustic imagery, as isolated objects (e.g., moorings, mines, rocks) appear as blobs in the acquired images. This work focuses the application of the SIFT, SURF, KAZE and U-SURF feature extraction algorithms for blob feature tracking towards Simultaneous Localization and Mapping applications. We introduce a modified feature extraction and matching pipeline intended to improve feature detection and matching precision, tackling performance deterioration caused by the differences between optical and acoustic imagery. Experimental evaluation was undertaken resorting to datasets collected from a water tank structure.

2022

Sonar-based Cable Detection for in-situ Calibration of Marine Sensors

Autores
Oliveira, AJ; Ferreira, BM; Diamant, R; Cruz, NA;

Publicação
2022 IEEE/OES AUTONOMOUS UNDERWATER VEHICLES SYMPOSIUM (AUV)

Abstract
In-situ calibration of marine sensors requires close-range positioning. In turn, localization relative to a given object of interest is necessary. This paper deals with the detection of a vertical cable hanging from a marine observatory implemented by means of a moored buoy. An algorithm composed of sequential image filtering, segmentation and template matching is proposed. Two approaches for generating the cable's acoustic image template are introduced. The performance of the approaches, obtained by comparison with ground-truth measurements, are illustrated over challenging cluttered acoustic images collected in a test tank. The results indicate a performance better than 74% of the best candidate to match the actual cable.

2022

Real-time Wall Identification for Underwater Mapping using Imaging Sonar

Autores
Oliveira, AJ; Ferreira, BM; Cruz, NA;

Publicação
2022 OCEANS HAMPTON ROADS

Abstract
Wall and other planar structures are common in environments as harbors, marinas, or dams. In this paper we introduce an algorithm aimed at the identification of these structures through acoustic images retrieved from an imaging sonar, building on an application of the Hough Transform algorithm. We employ a polar-based line parametric model for improved computational efficiency and further adapt the core Hough Transform blocks to the characteristics of acoustic imaging. The developed solution was subjected to experimental tests employing acoustic data acquired in a water tank, from different viewpoints and under different sonar gain configurations.

2021

A Performance Analysis of Feature Extraction Algorithms for Acoustic Image-Based Underwater Navigation

Autores
Oliveira, AJ; Ferreira, BM; Cruz, NA;

Publicação
JOURNAL OF MARINE SCIENCE AND ENGINEERING

Abstract
In underwater navigation, sonars are useful sensing devices for operation in confined or structured environments, enabling the detection and identification of underwater environmental features through the acquisition of acoustic images. Nonetheless, in these environments, several problems affect their performance, such as background noise and multiple secondary echoes. In recent years, research has been conducted regarding the application of feature extraction algorithms to underwater acoustic images, with the purpose of achieving a robust solution for the detection and matching of environmental features. However, since these algorithms were originally developed for optical image analysis, conclusions in the literature diverge regarding their suitability to acoustic imaging. This article presents a detailed comparison between the SURF (Speeded-Up Robust Features), ORB (Oriented FAST and Rotated BRIEF), BRISK (Binary Robust Invariant Scalable Keypoints), and SURF-Harris algorithms, based on the performance of their feature detection and description procedures, when applied to acoustic data collected by an autonomous underwater vehicle. Several characteristics of the studied algorithms were taken into account, such as feature point distribution, feature detection accuracy, and feature description robustness. A possible adaptation of feature extraction procedures to acoustic imaging is further explored through the implementation of a feature selection module. The performed comparison has also provided evidence that further development of the current feature description methodologies might be required for underwater acoustic image analysis.