Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Brett Mylo Drury
  • Cargo

    Investigador Colaborador Externo
  • Desde

    01 janeiro 2012
Publicações

2024

Bespoke cultivation of seablite with digital agriculture and machine learning

Autores
Chaichana, T; Reeve, G; Drury, B; Chakrabandhu, Y; Wangtueai, S; Yoowattana, S; Sookpotharom, S; Boonnam, N; Brennan, CS; Muangprathub, J;

Publicação
ECOLOGICAL INDICATORS

Abstract
Climate change has driven agriculture to alter farming methods for food production. This paper presents a new concept for monitoring, acquisition, management, analysis, and synthesis of ecological data, which captures the environmental determinants and direct gradients suited to a particular requirement for specific plant cultivation and sustainable agriculture. The purpose of this study is to investigate a smart seablite cultivation system. A novel digital agricultural method was developed and applied to digitised seablite cultivation. Machine learning was used to predict the future growth conditions of plants (seablites). The study identified the illustrative maps of seablite origins, a conceptual seablite smart farming model, essential factors for growing seablite, a digital circuit for cultivating seablite, and digital data of seablite growth phases comprised the digital data. The findings indicate that: (1) An indicator of soil salinity is a quantity of sodium chloride extracted from a seablite sample indicating its origin of environmental determinants. (2) Saline soil, saline water, pH, moisture, temperature, and sunlight are essential factors for seablite development. These factors are dependent on climate change and were measured using a smart seablite cultivation system. (3) Digital circuits of seablite cultivation provide a better understanding of the relationship between the essential factors for seablite growth and seablite growth phases. (4) Deep neural networks outperformed vector machines, with 86% accuracy at predicting future growth of seablites. Therefore, this finding showed that the essential seablite development factors can be manipulated as key controllers for agriculture in response to climate change and agriculture can be planned. Basic digitisation of specific plants aids plant migration. Digital agriculture is an important practice for agroecosystems.

Teses
supervisionadas

Prediction of Future News Trends

Autor
Sai Abinesh

Instituição