Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Clara Gouveia é mestre e doutorada em Engenharia Eletrotécnica e de Computadores pela Faculdade de Engenharia da Universidade do Porto, em 2008 e 2015 respetivamente. É membro do Centro de Sistemas de Energia do INESC TEC - Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência, onde desempenha funções de Investigadora Sénior. É atualmente responsável de área EMS/DMS e automação de redes, tendo a seu cargo a definição de linhas estratégicas de atuação e angariação de financiamento a nível nacional e europeu. Integra ainda o Conselho Científico do INESC TEC. Desde 2015 que desempenha funções de gestão de projetos de investigação e consultoria envolvendo empresas relevantes no sector nacional e internacional. O seu trabalho é dedicado à especificação, desenvolvimento e validação de soluções de gestão de energia tendo em conta a integração de recursos distribuídos (armazenamento de energia, produção dispersa, carga controlável e veículos elétricos) assim como soluções para a digitalização da rede de distribuição. Conta ainda com publicações em revistas científicas internacionais, livros e atas de conferências internacionais.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Clara Sofia Gouveia
  • Cargo

    Administrador
  • Desde

    01 julho 2011
  • Nacionalidade

    Portugal
  • Centro

    Sistemas de Energia
  • Contactos

    +351222094049
    clara.s.gouveia@inesctec.pt
045
Publicações

2026

Industrial Application of High-Temperature Heat and Electricity Storage for Process Efficiency and Power-to-Heat-to-Power Grid Integration

Autores
Coelho A.; Silva R.; Soares F.J.; Gouveia C.; Mendes A.; Silva J.V.; Freitas J.P.;

Publicação
Lecture Notes in Energy

Abstract
This chapter explores the potential of thermal energy storage (TES) systems towards the decarbonization of industry and energy networks, considering its coordinated management with electrochemical energy storage and renewable energy sources (RES). It covers various TES technologies, including sensible heat storage (SHS), latent heat storage (LHS), and thermochemical energy storage (TCS), each offering unique benefits and facing specific challenges. The integration of TES into industrial parks is highlighted, showing how these systems can optimize energy manage-ment and reduce reliance on external sources. A district heating use case also demonstrates the economic and environmental advantages of a multi-energy management strategy over single-energy approaches. Overall, TES technologies are presented as a promising pathway to greater energy effi-ciency and sustainability in industrial processes.

2025

Coordinated Operation and Flexibility Management of Medium and Low Voltage Grids

Autores
Affonso, M; Bessa, J; Gouveia, S;

Publicação
IEEE Transactions on Industry Applications

Abstract
The connection of distributed energy resources in distribution system have been increasing significantly, requiring new approaches as market-based flexibility solutions. This paper proposes the coordinated operation of on-load tap changer and flexibility services traded in a local market for voltage regulation in medium and low voltage grid. The wider action of on-load tap changer is used to restore voltages at the medium voltage feeder based on sensitivity coefficients. If voltage violations persist, flexibilities are traded in a local energy market with a cost-effective approach, where flexibility costs are minimized, and are activated according to their effectiveness indicated by sensitivity coefficients. Sensitivity coefficients are obtained in the medium voltage using an analytical approach that can be applied to multi-phase unbalanced systems, and in the low voltage using a data-driven approach due to their limited observability. Results show the proposed approach can be an effective solution to regulate voltages, combining the wider action of on-load tap changer with local flexibility, avoiding unnecessary tap changes and requesting a small volume of flexibility services. © 1972-2012 IEEE.

2025

Adaptive Protection Strategies for Multi-Microgrid Systems: Enhancing Resilience and Reliability in Medium Voltage Distribution Networks

Autores
Habib H.U.R.; Reiz C.; Alves E.; Gouveia C.S.;

Publicação
2025 IEEE Kiel Powertech Powertech 2025

Abstract
This paper presents an adaptive protection strategy for multi-microgrid (MMG) systems with inverter-based resources (IBRs) in medium voltage (MV) networks, using the IEEE 33-bus test system. The approach combines overcurrent (OC) and undervoltage (UV) protections through an offline-optimized, clustering-based scheme and real-time selection of setting groups. A metaheuristic algorithm determines optimal relay settings for representative scenarios, ensuring responsive and coordinated protection. Hardware-in-the-loop validation on OPAL-RT confirms the method's effectiveness across varying loads, DER outputs, and fault conditions. Results demonstrate reliable fault isolation, smooth mode transitions, and uninterrupted supply to healthy segments. Identified limitations in high-impedance fault handling suggest future improvements.

2025

AI-Assisted Adaptive Protection for Medium Voltage Distribution Networks: A Two-Phase Application Proposal with HIL Testing

Autores
Alves, E; Reiz, C; Gouveia, CS;

Publicação
2025 IEEE Kiel PowerTech

Abstract
The increasing penetration of inverter-based resources (IBR) in medium voltage (MV) networks presents significant challenges for traditional overcurrent (OC) protection systems, particularly in ensuring selectivity, reliability, and fault isolation. This paper presents an adaptive protection system (APS) that dynamically adjusts protection settings based on real-time network conditions, addressing the challenges posed by distributed energy resources (DER). The methodology builds on ongoing research and development efforts, combining an offline phase, where operational scenarios are simulated using historical data, clustered with fuzzy c-means (FCM), and optimized with evolutionary particle swarm optimization (EPSO), and an online phase. To overcome the static nature of conventional schemes, a machine learning (ML)-based classifier is integrated into the APS, enabling real-time adaptation of protection settings. In the online phase, a centralized substation protection controller (CPC) leverages real-time measurements, communicated via IEC 61850 standard protocols, to classify network conditions using a support vector machine (SVM) classifier and activate the appropriate protection settings. The proposed APS has been validated on a Hardware-in-the-Loop (HIL) platform, demonstrating significant improvements in fault detection times, selectivity, and reliability compared to traditional OC protection systems. As part of a continued effort to refine and expand the system's capabilities, this work highlights the potential of integrating artificial intelligence (AI) and real-time/online decision-making to enhance the adaptability and robustness of MV network protection in scenarios with high DER penetration. © 2025 Elsevier B.V., All rights reserved.

2025

IMPROVED ADMS WITH AN OPERATOR FRIENDLY INTERFACE

Autores
Pereira, JC; Gouveia, CS; Portelinha, RK; Viegas, P; Simões, J; Silva, P; Dias, S; Rodrigues, A; Pereira, A; Faria, J; Pino, G;

Publicação
IET Conference Proceedings

Abstract
The purpose of an Advanced Distribution Management System (ADMS) is to consolidate the key operational functions of a SCADA system, Outage management System (OMS) and Distribution Management System (DMS) into a unified platform. This includes several key functions: SCADA operation, incidents and outages management, teams and field works management including switching operations and advanced applications for network analysis and optimization. The new generation of ADMS also implements a predictive operation strategy to enhance real-time operator responsiveness. The innovative aspects related to the new generation of ADMS built on top of an open architecture will be presented in this paper. © The Institution of Engineering & Technology 2025.