Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Mestre em Bioengenharia com especialização em Engenharia Biomédica pela Faculdade de Engenharia da Universidade do Porto, Portugal. O meu projeto de dissertação culminou no desenvolvimento de um sistema robótico autónomo capaz de executar tarefas repetitivas em ambiente laboratorial. Neste contexto surgiu o interesse pelo ramo da robótica, no qual pretendi integrar e adquirir mais conhecimentos em áreas como mecânica, eletrónica, ciências da computação e biomédica. Em Setembro de 2016 integrei o grupo CRIIS pertencente ao INESC TEC como engenheira de I&D no desenvolvimento de novas soluções robóticas para responder a necessidades industriais. As minhas principais atividades incluem modelação de sistemas mecânicos e desenvolvimento eletrónico e de software. 

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Cláudia Daniela Rocha
  • Cargo

    Investigador
  • Desde

    01 fevereiro 2016
024
Publicações

2024

Inspection of Part Placement Within Containers Using Point Cloud Overlap Analysis for an Automotive Production Line

Autores
Costa C.M.; Dias J.; Nascimento R.; Rocha C.; Veiga G.; Sousa A.; Thomas U.; Rocha L.;

Publicação
Lecture Notes in Mechanical Engineering

Abstract
Reliable operation of production lines without unscheduled disruptions is of paramount importance for ensuring the proper operation of automated working cells involving robotic systems. This article addresses the issue of preventing disruptions to an automotive production line that can arise from incorrect placement of aluminum car parts by a human operator in a feeding container with 4 indexing pins for each part. The detection of the misplaced parts is critical for avoiding collisions between the containers and a high pressure washing machine and also to avoid collisions between the parts and a robotic arm that is feeding parts to a air leakage inspection machine. The proposed inspection system relies on a 3D sensor for scanning the parts inside a container and then estimates the 6 DoF pose of the container followed by an analysis of the overlap percentage between each part reference point cloud and the 3D sensor data. When the overlap percentage is below a given threshold, the part is considered as misplaced and the operator is alerted to fix the part placement in the container. The deployment of the inspection system on an automotive production line for 22 weeks has shown promising results by avoiding 18 hours of disruptions, since it detected 407 containers having misplaced parts in 4524 inspections, from which 12 were false negatives, while no false positives were reported, which allowed the elimination of disruptions to the production line at the cost of manual reinspection of 0.27% of false negative containers by the operator.

2024

A Robotic Framework for the Robot@Factory 4.0 Competition

Autores
Sousa, RB; Rocha, CD; Martins, JG; Costa, JP; Padrao, JT; Sarmento, JM; Carvalho, JP; Lopes, MS; Costa, PG; Moreira, AP;

Publicação
2024 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
Robotic competitions stand as platforms to propel the forefront of robotics research while nurturing STEM education, serving as hubs of both applied research and scientific innovation. In Portugal, the Portuguese Robotics Open (FNR) is an event with several robotic competitions, including the Robot@Factory 4.0 competition. This competition presents an example of deploying autonomous robots on a factory shop floor. Although the literature has works proposing frameworks for the original version of the Robot@Factory competition, none of them proposes a system framework for the Robot@Factory 4.0 version that presents the hardware, firmware, and software to complete the competition and achieve autonomous navigation. This paper proposes a complete robotic framework for the Robot@Factory 4.0 competition that is modular and open-access, enabling future participants to use and improve it in future editions. This work is the culmination of all the knowledge acquired by winning the 2022 and 2023 editions of the competition.

2024

Transitioning trends into action: A simulation-based Digital Twin architecture for enhanced strategic and operational decision-making

Autores
Santos, R; Piqueiro, H; Dias, R; Rocha, D;

Publicação
Computers and Industrial Engineering

Abstract
In the dynamic realm of nowadays manufacturing, integrating digital technologies has become paramount for enhancing operational efficiency and decision-making processes. This article presents a novel system architecture that integrates a Simulation-based Digital Twin (DT) with emerging trends in manufacturing to enhance decision-making, accompanied by a detailed technical approach encompassing protocols and technologies for each component. The DT leverages advanced simulation techniques to model, monitor, and optimize production processes in real time, facilitating both strategic and operational decision-making. Complementing the DT, trending technologies such as artificial intelligence, additive manufacturing, collaborative robots, autonomous vehicles, and connectivity advancements are strategically integrated to enhance operational efficiency and facilitate the adoption of the Manufacturing as a Service (MaaS) paradigm. A case study within a MaaS supplier context, deployed in an industrial laboratory with advanced robotic systems, demonstrates the practical application of optimizing dynamic job-shop configurations using Simulation-based DT, showcasing strategies to improve operational efficiency and resource utilization. The results of the industrial experiment were highly encouraging, underscoring the potential for extension to more intricate industrial systems, with particular emphasis on incorporating sustainability and remanufacturing principles. © 2024

2024

Enhancing Smart Manufacturing Systems: A Digital Twin Approach Employing Simulation, Flexible Robots and Additive Manufacturing Technologies

Autores
Santos, R; Rocha, C; Dias, R; Quintas, J;

Publicação
Communications in Computer and Information Science

Abstract
A new generation of manufacturing systems is emerging through the adoption of new policies to overcome future crises highlighted by constant social, environmental, and economic concerns. The rise of so-called smart manufacturing is noticeable. However, new risks to humankind are being introduced, and, more than ever, science and technology are required to guarantee the future sustainability and resilience of our manufacturing systems. This research presents a Digital Twin approach resorting to simulation models with embedded intelligence to transform efficient manufacturing systems and react to complex and unpredictable circumstances. The methodology covers production scheduling incorporating flexible robots, internal logistics supervision contemplating planning and control of mobile robots, and capacity management. The method demonstrates the potential of integrating Additive Manufacturing technologies to quickly react to production needs. The developed strategy was enforced and assessed in an industrial experiment, exhibiting its robustness and promising application. The attained results were very encouraging, highlighting its potential extension to more complex industrial systems. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

2023

Quality Control of Casting Aluminum Parts: A Comparison of Deep Learning Models for Filings Detection

Autores
Nascimento, R; Ferreira, T; Rocha, C; Filipe, V; Silva, MF; Veiga, G; Rocha, L;

Publicação
2023 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
Quality control inspection systems are crucial and a key factor in maintaining and ensuring the integrity of any product. The quality inspection task is a repetitive task, when performed by operators only, it can be slow and susceptible to failures due to the lack of attention and fatigue. This work focuses on the inspection of parts made of high-pressure diecast aluminum for components of the automotive industry. In the present case study, last year, 18240 parts needed to be reinspected, requiring approximately 96 hours, a time that could be spent on other tasks. This article performs a comparison of four deep learning models: Faster R-CNN, RetinaNet, YOLOv7, and YOLOv7-tiny, to find out which one is more suited to perform the quality inspection task of detecting metal filings on casting aluminum parts. As for this use-case the prototype must be highly intolerant to False Negatives, that is, the part being defective and passing undetected, Faster R-CNN was considered the bestperforming model based on a Recall value of 96.00%.

Teses
supervisionadas

2022

Serious games for hand and wrist rehabilitation

Autor
Jacinta Dias Ferreira

Instituição
UP-FEUP

2022

Development of a Knee Positioning System for X-ray Environment

Autor
Catarina Oliveira Lopes

Instituição
UP-FEUP