Detalhes
Nome
Cláudia Vanessa BritoCargo
Investigador AuxiliarDesde
01 outubro 2018
Nacionalidade
PortugalCentro
Laboratório de Software ConfiávelContactos
+351253604440
claudia.v.brito@inesctec.pt
2023
Autores
Cepa, B; Brito, C; Sousa, A;
Publicação
2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG
Abstract
Medical imaging, mainly Magnetic Resonance Imaging (MRI), plays a predominant role in healthcare diagnosis. Nevertheless, the diagnostic process is prone to errors and is conditioned by available medical data, which might be insufficient. A novel solution is resorting to image generation algorithms to address these challenges. Thus, this paper presents a Deep Learning model based on a Deep Convolutional Generative Adversarial Network (DCGAN) architecture. Our model generates 2D MRI images of size 256x256, containing an axial view of the brain with a tumor. The model was implemented using ChainerMN, a scalable and flexible framework that enables faster and parallel training of Deep Learning networks. The images obtained provide an overall representation of the brain structure and the tumoral area and show considerable brain-tumor separation. For this purpose, and owing to their previous state-of-the-art results in general image-generation tasks, we conclude that GAN-based models are a promising approach for medical imaging.
2023
Autores
Brito, C; Ferreira, P; Portela, B; Oliveira, R; Paulo, J;
Publicação
38TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2023
Abstract
We propose Soteria, a system for distributed privacy-preserving Machine Learning (ML) that leverages Trusted Execution Environments (e.g. Intel SGX) to run code in isolated containers (enclaves). Unlike previous work, where all ML-related computation is performed at trusted enclaves, we introduce a hybrid scheme, combining computation done inside and outside these enclaves. The conducted experimental evaluation validates that our approach reduces the runtime of ML algorithms by up to 41%, when compared to previous related work. Our protocol is accompanied by a security proof, as well as a discussion regarding resilience against a wide spectrum of ML attacks.
2023
Autores
Brito, CV; Ferreira, PG; Portela, BL; Oliveira, RC; Paulo, JT;
Publicação
IEEE ACCESS
Abstract
The adoption of third-party machine learning (ML) cloud services is highly dependent on the security guarantees and the performance penalty they incur on workloads for model training and inference. This paper explores security/performance trade-offs for the distributed Apache Spark framework and its ML library. Concretely, we build upon a key insight: in specific deployment settings, one can reveal carefully chosen non-sensitive operations (e.g. statistical calculations). This allows us to considerably improve the performance of privacy-preserving solutions without exposing the protocol to pervasive ML attacks. In more detail, we propose Soteria, a system for distributed privacy-preserving ML that leverages Trusted Execution Environments (e.g. Intel SGX) to run computations over sensitive information in isolated containers (enclaves). Unlike previous work, where all ML-related computation is performed at trusted enclaves, we introduce a hybrid scheme, combining computation done inside and outside these enclaves. The experimental evaluation validates that our approach reduces the runtime of ML algorithms by up to 41% when compared to previous related work. Our protocol is accompanied by a security proof and a discussion regarding resilience against a wide spectrum of ML attacks.
2023
Autores
Pina, N; Brito, C; Vitorino, R; Cunha, I;
Publicação
Transportation Research Procedia
Abstract
Cities worldwide have agreed on ambitious goals regarding carbon neutrality; thus, smart cities face challenges regarding active and shared mobility due to public transportation's low attractiveness and lack of real-time multimodal information. These issues have led to a lack of data on the community's mobility choices, traffic commuters' carbon footprint and corresponding low motivation to change habits. Besides, many consumers are reluctant to use some software tools due to the lack of data privacy guarantee. This paper presents a methodology developed in the FranchetAI project that addrebes these issues by providing distributed privacy-preserving machine learning models that identify travel behaviour patterns and respective GHG emissions to recommend alternative options. Also, the paper presents the developed FranchetAI mobile prototype. © 2023 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
2022
Autores
Brito, C; Esteves, M; Peixoto, H; Abelha, A; Machado, J;
Publicação
WIRELESS NETWORKS
Abstract
Continuous ambulatory peritoneal dialysis (CAPD) is a treatment used by patients in the end-stage of chronic kidney diseases. Those patients need to be monitored using blood tests and those tests can present some patterns or correlations. It could be meaningful to apply data mining (DM) to the data collected from those tests. To discover patterns from meaningless data, it becomes crucial to use DM techniques. DM is an emerging field that is currently being used in machine learning to train machines to later aid health professionals in their decision-making process. The classification process can found patterns useful to understand the patients' health development and to medically act according to such results. Thus, this study focuses on testing a set of DM algorithms that may help in classifying the values of serum creatinine in patients undergoing CAPD procedures. Therefore, it is intended to classify the values of serum creatinine according to assigned quartiles. The better results obtained were highly satisfactory, reaching accuracy rate values of approximately 95%, and low relative absolute error values.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.