Detalhes
Nome
Diana Filipa GuimarãesCargo
Investigador AuxiliarDesde
07 novembro 2016
Nacionalidade
PortugalCentro
Centro de Fotónica AplicadaContactos
+351220402301
diana.f.guimaraes@inesctec.pt
2025
Autores
Lopes, T; Cavaco, R; Capela, D; Dias, F; Teixeira, J; Monteiro, CS; Lima, A; Guimaraes, D; Jorge, PAS; Silva, NA;
Publicação
TALANTA
Abstract
Combining data from different sensing modalities has been a promising research topic for building better and more reliable data-driven models. In particular, it is known that multimodal spectral imaging can improve the analytical capabilities of standalone spectroscopy techniques through fusion, hyphenation, or knowledge distillation techniques. In this manuscript, we focus on the latter, exploring how one can increase the performance of a Laser-induced Breakdown Spectroscopy system for mineral classification problems using additional spectral imaging techniques. Specifically, focusing on a scenario where Raman spectroscopy delivers accurate mineral classification performance, we show how to deploy a knowledge distillation pipeline where Raman spectroscopy may act as an autonomous supervisor for LIBS. For a case study concerning a challenging Li-bearing mineral identification of spodumene and petalite, our results demonstrate the advantages of this method in improving the performance of a single-technique system. LIBS trained with labels obtained by Raman presents an enhanced classification performance. Furthermore, leveraging the interpretability of the model deployed, the workflow opens opportunities for the deployment of assisted feature discovery pipelines, which may impact future academic and industrial applications.
2025
Autores
Capela, D; Lopes, T; Dias, F; Ferreira, MFS; Teixeira, J; Lima, A; Jorge, PAS; Silva, NA; Guimaraes, D;
Publicação
SPECTROCHIMICA ACTA PART B-ATOMIC SPECTROSCOPY
Abstract
Mineral identification is a challenging task in geological sciences, which often implies multiple analyses of the physical and chemical properties of the samples for an accurate result. This task is particularly critical for the mining industry, where proper and fast mineral identification may translate into major efficiency and performance gains, such as in the case of the lithium mining industry. In this study, a mineral identification algorithm optimized for analyzing lithium-bearing samples using Laser-induced breakdown spectroscopy (LIBS) imaging, is put to the test with a set of representative samples. The algorithm incorporates advanced spectral processing techniques-baseline removal, Gaussian filtering, and data normalization-alongside unsupervised clustering to generate interpretable classification maps and auxiliary charts. These enhancements facilitate rapid and precise labelling of mineral compositions, significantly improving the interpretability and interactivity of the user interface. Extensive testing on diverse mineral samples with varying complexities confirmed the algorithm's robustness and broad applicability. Challenges related to sample granulometry and LIBS resolution were identified, suggesting future directions for optimizing system resolution to enhance classification accuracy in complex mineral matrices. The integration of this advanced algorithm with LIBS technology holds the potential to accelerate the mineral evaluation, paving the way for more efficient and sustainable mineral exploration.
2025
Autores
Teixeira, J; Lopes, T; Capela, D; Monteiro, CS; Guimarães, D; Lima, A; Jorge, PAS; Silva, NA;
Publicação
Scientific Reports
Abstract
2025
Autores
Capela, D; Pessanha, S; Lopes, T; Cavaco, R; Teixeira, J; Ferreira, MF; Magalhães, P; Jorge, PA; Silva, NA; Guimarães, D;
Publicação
Journal of Hazardous Materials
Abstract
2024
Autores
Lopes, T; Capela, D; Guimaraes, D; Ferreira, MFS; Jorge, PAS; Silva, NA;
Publicação
SCIENTIFIC REPORTS
Abstract
Multimodal spectral imaging offers a unique approach to the enhancement of the analytical capabilities of standalone spectroscopy techniques by combining information gathered from distinct sources. In this manuscript, we explore such opportunities by focusing on two well-known spectral imaging techniques, namely laser-induced breakdown spectroscopy, and hyperspectral imaging, and explore the opportunities of collaborative sensing for a case study involving mineral identification. In specific, the work builds upon two distinct approaches: a traditional sensor fusion, where we strive to increase the information gathered by including information from the two modalities; and a knowledge distillation approach, where the Laser Induced Breakdown spectroscopy is used as an autonomous supervisor for hyperspectral imaging. Our results show the potential of both approaches in enhancing the performance over a single modality sensing system, highlighting, in particular, the advantages of the knowledge distillation framework in maximizing the potential benefits of using multiple techniques to build more interpretable models and paving for industrial applications.
Teses supervisionadas
2023
Autor
Diana Faria Capela
Instituição
INESCTEC
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.