Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Francesco Renna
  • Desde

    01 junho 2020
  • Nacionalidade

    Itália
  • Contactos

    +351222094000
    francesco.renna@inesctec.pt
005
Publicações

2024

Separation of the Aortic and Pulmonary Components of the Second Heart Sound via Alternating Optimization

Autores
Renna, F; Gaudio, A; Mattos, S; Plumbley, MD; Coimbra, MT;

Publicação
IEEE ACCESS

Abstract
An algorithm for blind source separation (BSS) of the second heart sound (S2) into aortic and pulmonary components is proposed. It recovers aortic (A2) and pulmonary (P2) waveforms, as well as their relative delays, by solving an alternating optimization problem on the set of S2 sounds, without the use of auxiliary ECG or respiration phase measurement data. This unsupervised and data-driven approach assumes that the A2 and P2 components maintain the same waveform across heartbeats and that the relative delay between onset of the components varies according to respiration phase. The proposed approach is applied to synthetic heart sounds and to real-world heart sounds from 43 patients. It improves over two state-of-the-art BSS approaches by 10% normalized root mean-squared error in the reconstruction of aortic and pulmonary components using synthetic heart sounds, demonstrates robustness to noise, and recovery of splitting delays. The detection of pulmonary hypertension (PH) in a Brazilian population is demonstrated by training a classifier on three scalar features from the recovered A2 and P2 waveforms, and this yields an auROC of 0.76.

2024

Diffusion Model for Generating Synthetic Contrast Enhanced CT from Non-Enhanced Heart Axial CT Images

Autores
Ferreira V.R.S.; de Paiva A.C.; Silva A.C.; de Almeida J.D.S.; Junior G.B.; Renna F.;

Publicação
International Conference on Enterprise Information Systems, ICEIS - Proceedings

Abstract
This work proposes the use of a deep learning-based adversarial diffusion model to address the translation of contrast-enhanced from non-contrast-enhanced computed tomography (CT) images of the heart. The study overcomes challenges in medical image translation by combining concepts from generative adversarial networks (GANs) and diffusion models. Results were evaluated using the Peak signal to noise ratio (PSNR) and structural index similarity (SSIM) to demonstrate the model's effectiveness in generating contrast images while preserving quality and visual similarity. Despite successes, Root Mean Square Error (RMSE) analysis indicates persistent challenges, highlighting the need for continuous improvements. The intersection of GANs and diffusion models promises future advancements, significantly contributing to clinical practice. The table compares CyTran, CycleGAN, and Pix2Pix networks with the proposed model, indicating directions for improvement.

2024

Lightweight 3D CNN for the Segmentation of Coronary Calcifications and Calcium Scoring

Autores
Santos, R; Baeza, R; Filipe, VM; Renna, F; Paredes, H; Pedrosa, J;

Publicação
2024 IEEE 22ND MEDITERRANEAN ELECTROTECHNICAL CONFERENCE, MELECON 2024

Abstract
Coronary artery calcium is a good indicator of coronary artery disease and can be used for cardiovascular risk stratification. Over the years, different deep learning approaches have been proposed to automatically segment coronary calcifications in computed tomography scans and measure their extent through calcium scores. However, most methodologies have focused on using 2D architectures which neglect most of the information present in those scans. In this work, we use a 3D convolutional neural network capable of leveraging the 3D nature of computed tomography scans and including more context in the segmentation process. In addition, the selected network is lightweight, which means that we can have 3D convolutions while having low memory requirements. Our results show that the predictions of the model, trained on the COCA dataset, are close to the ground truth for the majority of the patients in the test set obtaining a Dice score of 0.90 +/- 0.16 and a Cohen's linearly weighted kappa of 0.88 in Agatston score risk categorization. In conclusion, our approach shows promise in the tasks of segmenting coronary artery calcifications and predicting calcium scores with the objectives of optimizing clinical workflow and performing cardiovascular risk stratification.

2024

Singularity Strength Re-calibration of Fully Convolutional Neural Networks for Biomedical Image Segmentation

Autores
Martins, ML; Coimbra, MT; Renna, F;

Publicação
32ND EUROPEAN SIGNAL PROCESSING CONFERENCE, EUSIPCO 2024

Abstract
This paper is concerned with the semantic segmentation within domain-specific contexts, such as those pertaining to biology, physics, or material science. Under these circumstances, the objects of interest are often irregular and have fine structure, i.e., detail at arbitrarily small scales. Empirically, they are often understood as self-similar processes, a concept grounded in Multifractal Analysis. We find that this multifractal behaviour is carried out through a convolutional neural network (CNN), if we view its channel-wise responses as self-similar measures. A function of the local singularities of each measure we call Singularity Stregth Recalibration (SSR) is set forth to modulate the response at each layer of the CNN. SSR is a lightweight, plug-in module for CNNs. We observe that it improves a baseline U-Net in two biomedical tasks: skin lesion and colonic polyp segmentation, by an average of 1.36% and 1.12% Dice score, respectively. To the best of our knowledge, this is the first time multifractal-analysis is conducted end-to-end for semantic segmentation.

2024

QUAIDE - Quality assessment of AI preclinical studies in diagnostic endoscopy

Autores
Antonelli, G; Libanio, D; De Groof, AJ; van der Sommen, F; Mascagni, P; Sinonquel, P; Abdelrahim, M; Ahmad, O; Berzin, T; Bhandari, P; Bretthauer, M; Coimbra, M; Dekker, E; Ebigbo, A; Eelbode, T; Frazzoni, L; Gross, SA; Ishihara, R; Kaminski, MF; Messmann, H; Mori, Y; Padoy, N; Parasa, S; Pilonis, ND; Renna, F; Repici, A; Simsek, C; Spadaccini, M; Bisschops, R; Bergman, JJGHM; Hassan, C; Ribeiro, MD;

Publicação
GUT

Abstract
Artificial intelligence (AI) holds significant potential for enhancing quality of gastrointestinal (GI) endoscopy, but the adoption of AI in clinical practice is hampered by the lack of rigorous standardisation and development methodology ensuring generalisability. The aim of the Quality Assessment of pre-clinical AI studies in Diagnostic Endoscopy (QUAIDE) Explanation and Checklist was to develop recommendations for standardised design and reporting of preclinical AI studies in GI endoscopy. The recommendations were developed based on a formal consensus approach with an international multidisciplinary panel of 32 experts among endoscopists and computer scientists. The Delphi methodology was employed to achieve consensus on statements, with a predetermined threshold of 80% agreement. A maximum three rounds of voting were permitted. Consensus was reached on 18 key recommendations, covering 6 key domains: data acquisition and annotation (6 statements), outcome reporting (3 statements), experimental setup and algorithm architecture (4 statements) and result presentation and interpretation (5 statements). QUAIDE provides recommendations on how to properly design (1. Methods, statements 1-14), present results (2. Results, statements 15-16) and integrate and interpret the obtained results (3. Discussion, statements 17-18). The QUAIDE framework offers practical guidance for authors, readers, editors and reviewers involved in AI preclinical studies in GI endoscopy, aiming at improving design and reporting, thereby promoting research standardisation and accelerating the translation of AI innovations into clinical practice.Abstract Artificial intelligence (AI) holds significant potential for enhancing quality of gastrointestinal (GI) endoscopy, but the adoption of AI in clinical practice is hampered by the lack of rigorous standardisation and development methodology ensuring generalisability. The aim of the Quality Assessment of pre-clinical AI studies in Diagnostic Endoscopy (QUAIDE) Explanation and Checklist was to develop recommendations for standardised design and reporting of preclinical AI studies in GI endoscopy. The recommendations were developed based on a formal consensus approach with an international multidisciplinary panel of 32 experts among endoscopists and computer scientists. The Delphi methodology was employed to achieve consensus on statements, with a predetermined threshold of 80% agreement. A maximum three rounds of voting were permitted. Consensus was reached on 18 key recommendations, covering 6 key domains: data acquisition and annotation (6 statements), outcome reporting (3 statements), experimental setup and algorithm architecture (4 statements) and result presentation and interpretation (5 statements). QUAIDE provides recommendations on how to properly design (1. Methods, statements 1-14), present results (2. Results, statements 15-16) and integrate and interpret the obtained results (3. Discussion, statements 17-18). The QUAIDE framework offers practical guidance for authors, readers, editors and reviewers involved in AI preclinical studies in GI endoscopy, aiming at improving design and reporting, thereby promoting research standardisation and accelerating the translation of AI innovations into clinical practice.Abstract Artificial intelligence (AI) holds significant potential for enhancing quality of gastrointestinal (GI) endoscopy, but the adoption of AI in clinical practice is hampered by the lack of rigorous standardisation and development methodology ensuring generalisability. The aim of the Quality Assessment of pre-clinical AI studies in Diagnostic Endoscopy (QUAIDE) Explanation and Checklist was to develop recommendations for standardised design and reporting of preclinical AI studies in GI endoscopy. The recommendations were developed based on a formal consensus approach with an international multidisciplinary panel of 32 experts among endoscopists and computer scientists. The Delphi methodology was employed to achieve consensus on statements, with a predetermined threshold of 80% agreement. A maximum three rounds of voting were permitted. Consensus was reached on 18 key recommendations, covering 6 key domains: data acquisition and annotation (6 statements), outcome reporting (3 statements), experimental setup and algorithm architecture (4 statements) and result presentation and interpretation (5 statements). QUAIDE provides recommendations on how to properly design (1. Methods, statements 1-14), present results (2. Results, statements 15-16) and integrate and interpret the obtained results (3. Discussion, statements 17-18). The QUAIDE framework offers practical guidance for authors, readers, editors and reviewers involved in AI preclinical studies in GI endoscopy, aiming at improving design and reporting, thereby promoting research standardisation and accelerating the translation of AI innovations into clinical practice.Abstract Artificial intelligence (AI) holds significant potential for enhancing quality of gastrointestinal (GI) endoscopy, but the adoption of AI in clinical practice is hampered by the lack of rigorous standardisation and development methodology ensuring generalisability. The aim of the Quality Assessment of pre-clinical AI studies in Diagnostic Endoscopy (QUAIDE) Explanation and Checklist was to develop recommendations for standardised design and reporting of preclinical AI studies in GI endoscopy. The recommendations were developed based on a formal consensus approach with an international multidisciplinary panel of 32 experts among endoscopists and computer scientists. The Delphi methodology was employed to achieve consensus on statements, with a predetermined threshold of 80% agreement. A maximum three rounds of voting were permitted. Consensus was reached on 18 key recommendations, covering 6 key domains: data acquisition and annotation (6 statements), outcome reporting (3 statements), experimental setup and algorithm architecture (4 statements) and result presentation and interpretation (5 statements). QUAIDE provides recommendations on how to properly design (1. Methods, statements 1-14), present results (2. Results, statements 15-16) and integrate and interpret the obtained results (3. Discussion, statements 17-18). The QUAIDE framework offers practical guidance for authors, readers, editors and reviewers involved in AI preclinical studies in GI endoscopy, aiming at improving design and reporting, thereby promoting research standardisation and accelerating the translation of AI innovations into clinical practice.

Teses
supervisionadas

2023

Multimodal deep learning for heart sound and electrocardiogram classification

Autor
Hélder Miguel Carvalho Vieira

Instituição
UP-FCUP

2023

Novel deep learning methods for characterization of precancerous tissue in endoscopic narrow band images

Autor
Maria Pedroso da Silva

Instituição
UP-FCUP

2023

Listening for Wolf Conservation: Deep Learning for Automated Howl Recognition  and Classification

Autor
Rafael de Faria Campos

Instituição
UP-FCUP

2023

Deep Learning Algorithms for Anatomical Landmark Detection

Autor
Miguel Lopes Martins

Instituição
UP-FCUP

2022

Listening for wolf conservation: Deep learning for automated howl recognition and classification

Autor
Rafael de Faria Campos

Instituição
UP-FCUP