Detalhes
Nome
Francisco Manuel RibeiroCargo
InvestigadorDesde
19 novembro 2019
Nacionalidade
PortugalCentro
Centro de Telecomunicações e MultimédiaContactos
+351222094000
francisco.m.ribeiro@inesctec.pt
2024
Autores
Oliveira, M; Ribeiro, FM; Paulino, N; Yurduseven, O; Pessoa, LM;
Publicação
IEEE International Mediterranean Conference on Communications and Networking, MeditCom 2024, Madrid, Spain, July 8-11, 2024
Abstract
This paper presents SpecRF-Posture, a novel low-cost approach for accurate Human Posture Recognition (HPR) using Radio Frequency (RF) signals. SpecRF-Posture leverages S21 parameters within the WiFi-6E frequency range for classification. We obtain a dataset of S21 parameters for different postures by performing beamscanning through mechanical rotation of a horn transmitter aimed at a reflective surface that illuminates the space of interest. We determine the S21 parameters of the signals that are then reflected back from the space onto an omnidirectional receiver. Thus for each posture we attain the S21 parameters of each possible illumination direction of the space. Experimental results demonstrate that SpecRF-Posture achieves an accuracy of 99.17 % in posture classification, highlighting its effectiveness. Additionally, an RF dataset was acquired using a software package for automatic data acquisition within the WiFi-6E frequency range, and both the dataset and the software package have been made publicly available. © 2024 IEEE.
2024
Autores
Correia, T; Ribeiro, FM; Pinto, VH;
Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT II, OL2A 2023
Abstract
The notable expansion of technologies related to automated processes has been observed in recent years, largely driven by the significant advantages they provide across diverse industries. Concurrently, there has been a rise in simulation technologies aimed at replicating these complex systems. Nevertheless, in order to fully leverage the potential of these technologies, it is crucial to ensure the highest possible resemblance of simulations to real-world scenarios. In brief, this work consists of the development of a data acquisition and processing pipeline allowing a posterior search for the optimal physical parameters in MuJoCo simulator to obtain a more accurate simulation of a dexterous robotic hand. In the end, a Random Search optimization algorithm was used to validate this same pipeline.
2023
Autores
Santos, BM; Pais, P; Ribeiro, FM; Lima, J; Goncalves, G; Pinto, VH;
Publicação
2023 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
Accurate estimation of hand shape and position is an important task in various applications, such as human-computer interaction, human-robot interaction, and virtual and augmented reality. In this paper, it is proposed a method to estimate the hand keypoints from single and colored images utilizing the pre-trained deep convolutional neural networks VGG-16 and VGG-19. The method is evaluated on the FreiHAND dataset, and the performance of the two neural networks is compared. The best results were achieved by the VGG-19, with average estimation errors of 7.40 pixels and 11.36 millimeters for the best cases of two-dimensional and three-dimensional hand keypoints estimation, respectively.
2022
Autores
Cerqueira, T; Ribeiro, FM; Pinto, VH; Lima, J; Goncalves, G;
Publicação
APPLIED SCIENCES-BASEL
Abstract
This article focuses on a sensorial glove prototype capable of acquiring hand motion and estimating its pose. The presented solution features twelve inertial measurement units (IMUs) to track hand orientation. The sensors are attached to a glove to decrease the project cost. The system also focuses on sensor fusion algorithms for the IMUs and further implementations, presenting the algebraic quaternion algorithm (AQUA), used because of its modularity and intuitive implementation. An adaptation of a human hand model is proposed, explaining its advantages and its limitations. Considering that the calibration is a very important process in gyroscope performance, the online and offline calibration data was analyzed, pointing out its challenges and improvements. To better visualize the model and sensors a simulation was conducted in Unity.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.