Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Gonçalo Leão
  • Cargo

    Assistente de Investigação
  • Desde

    08 abril 2020
Publicações

2023

Teaching ROS1/2 and Reinforcement Learning using a Mobile Robot and its Simulation

Autores
Ventuzelos, V; Leao, G; Sousa, A;

Publicação
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1

Abstract
Robotics is an ever-growing field, used in countless applications, from domestic to industrial, and taught in advanced courses of multiple higher education institutions. Robot Operating System (ROS), the most prominent robotics architecture, integrates several of these, and has recently moved to a new iteration in the form of ROS2. This project aims to design a complete educational package meant for teaching intelligent robotics in ROS1 and ROS2. A foundation for the package was constructed, using a small differential drive robot equipped with camera-based virtual sensors, a representation in the Flatland simulator, and introductory lessons to both ROS versions and Reinforcement Learning (RL) in robotics. To evaluate the package's pertinence, expected learning outcomes were set and the lessons were tested with users from varying backgrounds and levels of robotics experience. Encouraging results were obtained, especially in the ROS1 and ROS2 lessons, while the feedback from the RL lesson provided clear indications for future improvements. Therefore, this work provides solid groundwork for a more comprehensive educational package on robotics and ROS.

2023

An Inductive Logic Programming Approach for Entangled Tube Modeling in Bin Picking

Autores
Leao, G; Camacho, R; Sousa, A; Veiga, G;

Publicação
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 2

Abstract
Bin picking is a challenging problem that involves using a robotic manipulator to remove, one-by-one, a set of objects randomly stacked in a container. When the objects are prone to entanglement, having an estimation of their pose and shape is highly valuable for more reliable grasp and motion planning. This paper focuses on modeling entangled tubes with varying degrees of curvature. An unconventional machine learning technique, Inductive Logic Programming (ILP), is used to construct sets of rules (theories) capable of modeling multiple tubes when given the cylinders that constitute them. Datasets of entangled tubes are created via simulation in Gazebo. Experiments using Aleph and SWI-Prolog illustrate how ILP can build explainable theories with a high performance, using a relatively small dataset and low amount of time for training. Therefore, this work serves as a proof-of-concept that ILP is a valuable method to acquire knowledge and validate heuristics for pose and shape estimation in complex bin picking scenarios.

2023

Using Deep Reinforcement Learning for Navigation in Simulated Hallways

Autores
Leao, G; Almeida, F; Trigo, E; Ferreira, H; Sousa, A; Reis, LP;

Publicação
2023 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
Reinforcement Learning (RL) is a well-suited paradigm to train robots since it does not require any previous information or database to train an agent. This paper explores using Deep Reinforcement Learning (DRL) to train a robot to navigate in maps containing different sorts of obstacles and which emulate hallways. Training and testing were performed using the Flatland 2D simulator and a Deep Q-Network (DQN) provided by OpenAI gym. Different sets of maps were used for training and testing. The experiments illustrate how well the robot is able to navigate in maps distinct from the ones used for training by learning new behaviours (namely following walls) and highlight the key challenges when solving this task using DRL, including the appropriate definition of the state space and reward function, as well as of the stopping criteria during training.

2022

Using Simulation to Evaluate a Tube Perception Algorithm for Bin Picking

Autores
Leao, G; Costa, CM; Sousa, A; Reis, LP; Veiga, G;

Publicação
ROBOTICS

Abstract
Bin picking is a challenging problem that involves using a robotic manipulator to remove, one-by-one, a set of objects randomly stacked in a container. In order to provide ground truth data for evaluating heuristic or machine learning perception systems, this paper proposes using simulation to create bin picking environments in which a procedural generation method builds entangled tubes that can have curvatures throughout their length. The output of the simulation is an annotated point cloud, generated by a virtual 3D depth camera, in which the tubes are assigned with unique colors. A general metric based on micro-recall is proposed to compare the accuracy of point cloud annotations with the ground truth. The synthetic data is representative of a high quality 3D scanner, given that the performance of a tube modeling system when given 640 simulated point clouds was similar to the results achieved with real sensor data. Therefore, simulation is a promising technique for the automated evaluation of solutions for bin picking tasks.

2022

Simulated Mounting of a Flexible Wire for Automated Assembly of Vehicle Cabling Systems

Autores
Leão, G; Sousa, A; Dinis, D; Veiga, G;

Publicação
ROBOT 2022: Fifth Iberian Robotics Conference - Advances in Robotics, Volume 1, Zaragoza, Spain, 23-25 November 2022

Abstract
The manipulation of deformable objects poses a significant challenge for the automotive industry. In particular, the assembly of flexible cables and wire-harnesses in vehicles is still performed manually as there is yet to be a reliable and general solution for this problem. This paper presents a simple yet efficient motion planning algorithm to mount a flexible wire in an assembly jig, where the wire must traverse a set of forks in order. The algorithm uses a heuristic based on a set of control points to guide the wire’s movement. Various controlled assembly scenarios are built in simulation using MuJoCo, a physics engine that can emulate the dynamics of Deformable Linear Objects (DLO). Experimental results in simulation demonstrated that the amount and orientation of the forks has a large impact in the solution’s performance and highlighted several key ideas and challenges moving forward. Thus, this work serves as a stepping stone towards the development of more complete solutions, capable of assembling flexible items in vehicles. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.