Detalhes
Nome
Houssam Ahmad YactinCargo
Estudante ExternoDesde
15 março 2016
Nacionalidade
LíbanoCentro
Laboratório de Software ConfiávelContactos
+351253604440
houssam.a.yactin@inesctec.pt
2021
Autores
Shoker, A; Yactine, H;
Publicação
Advances in Information Security
Abstract
Fog/Edge computing improves the latency and security of data by keeping storage and computation close to the data source. Nevertheless, this raises other security challenges against malicious, a.k.a, Byzantine, attacks that can exploit the isolation of nodes, or when access to distributed data is required in untrusted environments. In this work, we study the feasibility of deploying Byzantine Agreement protocols to improve the security of fog/edge systems in untrusted environments. In particular, we explore existing Byzantine Agreement protocols, heavily developed in the Blockchain area, emphasizing the Consistency, Availability, and Partition-Tolerance tradeoffs in a geo-replicated system. Our work identifies and discusses three different approaches that follow the Strong Consistency, Eventual Consistency, and Strong Eventual Consistency models. Our conclusions show that Byzantine Agreement protocols are still immature to be used by fog/edge computing in untrusted environment due to their high finality latency; however, they are promising candidates that encourage further research in this direction. © 2021, Springer Nature Switzerland AG.
2021
Autores
Yactine, H; Shoker, A; Younes, G;
Publicação
Distributed Applications and Interoperable Systems - 21st IFIP WG 6.1 International Conference, DAIS 2021, Held as Part of the 16th International Federated Conference on Distributed Computing Techniques, DisCoTec 2021, Valletta, Malta, June 14-18, 2021, Proceedings
Abstract
2018
Autores
Rahhal, C;
Publicação
The International Journal of E-Learning and Educational Technologies in the Digital Media
Abstract
2017
Autores
Shoker, A; Yactine, H; Baquero, C;
Publicação
PROCEEDINGS OF THE 3RD INTERNATIONAL WORKSHOP ON PRINCIPLES AND PRACTICE OF CONSISTENCY FOR DISTRIBUTED DATA (PAPOC 17)
Abstract
Eventual consistency (EC) is a relaxed data consistency model that, driven by the CAP theorem, trades prompt consistency for high availability. Although, this model has shown to be promising and greatly adopted by industry, the state of the art only assumes that replicas can crash and recover. However, a Byzantine replica (i.e., arbitrary or malicious) can hamper the eventual convergence of replicas to a global consistent state, thus compromising the entire service. Classical BFT state machine replication protocols cannot solve this problem due to the blocking nature of consensus, something at odd with the availability via replica divergence in the EC model. In this work in progress paper, we introduce a new secure highly available protocol for the EC model that assumes a fraction of replicas and any client can be Byzantine. To respect the essence of EC, the protocol gives priority to high availability, and thus Byzantine detection is performed off the critical path on a consistent data offset. The paper concisely explains the protocol and discusses its feasibility. We aim at presenting a more comprehensive and empirical study in the future.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.