Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Hugo Ferreira é um investigador doutorado em Informática, na área de inteligência artificial (planeamento automatizado e aprendizagem computacional), FEUP 2011. Tem participado em projetos de extração de dados (data-mining) e de aprendizagem computacional (machine learning) nas áreas de monitorização de integridade estrutural (emissões acústicas), recomendação “on-line” (indústria da moda), a previsão do consumo de energia industrial (máquinas de corte de pedras ornamentais) e a manutenção industrial (detecção e prognóstico). Outras áreas de interesse incluem a aplicação de aprendizagem de máquina em processos colaborativos (sistemas de apoio à decisão, computação social, computação humana e jogos sérios).

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Hugo Miguel Ferreira
  • Cargo

    Investigador Auxiliar
  • Desde

    01 maio 1999
013
Publicações

2024

Deep Reinforcement Learning-Based Approach to Dynamically Balance Multi-manned Assembly Lines

Autores
Santos, R; Marques, C; Toscano, C; Ferreira, M; Ribeiro, J;

Publicação
Lecture Notes in Mechanical Engineering

Abstract
Assembly lines are at the core of many manufacturing systems, and planning for a well-balanced flow is key to ensure long-term efficiency. However, in flexible configurations such as Multi-Manned Assembly Lines (MMAL), the balancing problem also becomes more challenging. Due to the increased relevance of these assembly lines, this work aims to investigate the MMAL balancing problem, to contribute for a more effective decision-making process. Therefore, a new approach is proposed based on Deep Reinforcement Learning (DRL) embedded in a Digital Twin architecture. The proposed approach provides a close-to-reality training environment for the agent, using Discrete Event Simulation to simulate the production system dynamics. This methodology was tested on a real-world instance with preliminary results showing that similar solutions to the ones obtained using optimization-based strategies are achieved. This research provides evidence of success in terms of dynamic resource assignment to tasks and workers as a basis for future developments. © 2024, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2024

Supervised and unsupervised techniques in textile quality inspections

Autores
Ferreira, HM; Carneiro, DR; Guimaraes, MA; Oliveira, FV;

Publicação
5TH INTERNATIONAL CONFERENCE ON INDUSTRY 4.0 AND SMART MANUFACTURING, ISM 2023

Abstract
Quality inspection is a critical step in ensuring the quality and efficiency of textile production processes. With the increasing complexity and scale of modern textile manufacturing systems, the need for accurate and efficient quality inspection and defect detection techniques has become paramount. This paper compares supervised and unsupervised Machine Learning techniques for defect detection in the context of industrial textile production, in terms of their respective advantages and disadvantages, and their implementation and computational costs. We explore the use of an autoencoder for the detection of defects in textiles. The goal of this preliminary work is to find out if unsupervised methods can successfully train models with good performance without the need for defect labelled data. (c) 2023 The Authors. Published by Elsevier B.V.

2024

Fabric Defect Detection and Localization

Autores
Oliveira, F; Carneiro, D; Ferreira, H; Guimaraes, M;

Publicação
ADVANCES IN ARTIFICIAL INTELLIGENCE IN MANUFACTURING, ESAIM 2023

Abstract
Quality inspection is crucial in the textile industry as it ensures that the final products meet the required standards. It helps detect and address defects, such as fabric flaws and stitching irregularities, enhancing customer satisfaction, and optimizing production efficiency by identifying areas of improvement, reducing waste, and minimizing rework. In the competitive textile market, it is vital for maintaining customer loyalty, brand reputation, and sustained success. Nonetheless, and despite the importance of quality inspection, it is becoming increasingly harder to hire and train people for such tedious and repetitive tasks. In this context, there is an increased interest in automated quality control techniques that can be used in the industrial domain. In this paper we describe a computer vision model for localizing and classifying different types of defects in textiles. The model developed achieved an mAP@0.5 of 0.96 on the validation dataset. While this model was trained with a publicly available dataset, we will soon use the same architecture with images collected from Jacquard looms in the context of a funded research project. This paper thus represents an initial validation of the model for the purposes of fabric defect detection.

2020

Building Robust Prediction Models for Defective Sensor Data Using Artificial Neural Networks

Autores
de Sa, CR; Shekar, AK; Ferreira, H; Soares, C;

Publicação
14TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS (SOCO 2019)

Abstract
Sensors are susceptible to failure when exposed to extreme conditions over long periods of time. Besides they can be affected by noise or electrical interference. Models (Machine Learning or others) obtained from these faulty and noisy sensors may be less reliable. In this paper, we propose a data augmentation approach for making neural networks more robust to missing and faulty sensor data. This approach is shown to be effective in a real life industrial application that uses data of various sensors to predict the wear of an automotive fuel-system component. Empirical results show that the proposed approach leads to more robust neural network in this particular application than existing methods.

2019

Robust cepstral-based features for anomaly detection in ball bearings

Autores
Sousa, R; Antunes, J; Coutinho, F; Silva, E; Santos, J; Ferreira, H;

Publicação
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

Abstract
This paper proposes the linear frequency cepstral coefficients as highly discriminative features for anomaly detection in ball bearings using vibration sensor data. These features are based on cepstral analysis and are capable of encoding the patterns of a spectral magnitude profile. Incipient damages on bearings can grow rapidly under normal use resulting in vibration and harsh noise. If left undetected, this damage will worsen, leading to high maintenance costs or even injury. Multiple interferences in an industrial environment contaminate the signal, making it a challenge to correctly identify the bearings' condition. Many studies have attempted to overcome this issue at the signal level. However, the discriminative capacity of the current vibration signal features is still vulnerable to interference, which motivates this work. In order to demonstrate the benefits of these features, we (1) show that they are computationally efficient and suitable for real-time incremental training; (2) conduct discriminative analysis by evaluating the separability performance and comparing it with the state of the art; and (3) test the robustness of the proposed features under noise interference, which is ideal for use in the harsh operating conditions of industrial machinery. The data was obtained from a laboratory workbench setting that reproduces bearing fault scenarios. Results show that the proposed features are fast, competitive when compared to state-of-the-art features, and resilient to high levels of interference. Despite the higher performance when using the quadratic model, the proposed features remain highly discriminative when used with several other discriminant function.

Teses
supervisionadas

2023

Evaluating the sustainability of e-commerce deliveries strategies: A simulation-based approach

Autor
Kristen Vidal Diniz de Almeid

Instituição
INESCTEC