Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Ignacio Gil
  • Cargo

    Investigador Auxiliar
  • Desde

    05 fevereiro 2024
002
Publicações

2024

A novel formulation of low voltage distribution network equivalents for reliability analysis

Autores
Ndawula, MB; Djokic, SZ; Kisuule, M; Gu, CH; Hernando-Gil, I;

Publicação
SUSTAINABLE ENERGY GRIDS & NETWORKS

Abstract
Reliability analysis of large power networks requires accurate aggregate models of low voltage (LV) networks to allow for reasonable calculation complexity and to prevent long computational times. However, commonly used lumped load models neglect the differences in spatial distribution of demand, type of phase-connection of served customers and implemented protection system components (e.g., single-pole vs three-pole). This paper proposes a novel use of state enumeration (SE) and Monte Carlo simulation (MCS) techniques to formulate more accurate LV network reliability equivalents. The combined SE and MCS method is illustrated using a generic suburban LV test network, which is realistically represented by a reduced number of system states. This approach allows for a much faster and more accurate reliability assessments, where further reduction of system states results in a single-component equivalent reliability model with the same unavailability as the original LV network. Both mean values and probability distributions of standard reliability indices are calculated, where errors associated with the use of single-line models, as opposed to more detailed three-phase models, are quantified.

2024

Analysis of Long-Term Indicators in the British Balancing Market

Autores
Cheng S.; Gil I.H.; Flower I.; Gu C.; Li F.;

Publicação
IEEE Transactions on Power Systems

Abstract
Proactive participation of uncertain renewable generation in the day-ahead (DA) wholesale market effectively reduces the system marginal price and carbon emissions, whilst significantly increasing the volumes of real-time balancing mechanism prices to ensure system security and stability. To solve the conflicting interests over the two timescales, this article: 1) proposes a novel hierarchical optimization model to align with the actual operation paradigms of the hierarchical market, whereby the capacity allocation matrix is adopted to coordinate the DA and balancing markets; 2) mathematically formulates and quantitatively analyses the long-term driving factors of balancing actions, enabling system operators (SOs) to design efficient and well-functioning market structures to meet economic and environmental targets; 3) empowers renewable generating units and flexible loads to participate in the balancing market (BM) as 'active' actors and enforces the non-discriminatory provision of balancing services. The performance of the proposed model is validated on a modified IEEE 39-bus power system and a reduced GB network. Results reveal that with effective resource allocation in different timescales of the hierarchical market, the drop speed of balancing costs soars while the intermittent generation climbs. The proposed methodology enables SOs to make the most of all resources available in the market and balance the system flexibly and economically. It thus safeguards the climate mitigation pathways against the risks of substantially higher balancing costs.

2024

Cyber Vulnerabilities of Energy Systems

Autores
Zhao, AP; Li, S; Gu, C; Yan, X; Hu, PJ; Wang, Z; Xie, D; Cao, Z; Chen, X; Wu, C; Luo, T; Wang, Z; Hernando-Gil, I;

Publicação
IEEE Journal of Emerging and Selected Topics in Industrial Electronics

Abstract

2024

Review of energy management systems and optimization methods for hydrogen-based hybrid building microgrids

Autores
Sarwar, FA; Hernando-Gil, I; Vechiu, I;

Publicação
Energy Conversion and Economics

Abstract
AbstractRenewable energy-based microgrids (MGs) strongly depend on the implementation of energy storage technologies to optimize their functionality. Traditionally, electrochemical batteries have been the predominant means of energy storage. However, technological advancements have led to the recognition of hydrogen as a promising solution to address the long-term energy requirements of microgrid systems. This study conducted a comprehensive literature review aimed at analysing and synthesizing the principal optimization and control methodologies employed in hydrogen-based microgrids within the context of building microgrid infrastructures. A comparative assessment was conducted to evaluate the merits and disadvantages of the different approaches. The optimization techniques for energy management are categorized based on their predictability, deployment feasibility, and computational complexity. In addition, the proposed ranking system facilitates an understanding of its suitability for diverse applications. This review encompasses deterministic, stochastic, and cutting-edge methodologies, such as machine learning-based approaches, and compares and discusses their respective merits. The key outcome of this research is the classification of various energy management strategy (EMS) methodologies for hydrogen-based MG, along with a mechanism to identify which methodologies will be suitable under what conditions. Finally, a detailed examination of the advantages and disadvantages of various strategies for controlling and optimizing hybrid microgrid systems with an emphasis on hydrogen utilization is provided.

2023

PV Hosting Capacity in LV Networks by Combining Customer Voltage Sensitivity and Reliability Analysis

Autores
Kisuule, M; Ndawula, MB; Gu, C; Hernando-Gil, I;

Publicação
Energies

Abstract
This paper investigates voltage regulation in low voltage (LV) networks under different loading conditions of a supply network, with increased levels of distributed generation, and in particular with a diverse range of locational solar photovoltaic (PV) penetration. This topic has been researched extensively, with beneficial impacts expected up to a certain point when reverse power flows begin to negatively impact customers connected to the distribution system. In this paper, a voltage-based approach that utilizes novel voltage-based reliability indices is proposed to analyse the risk and reliability of the LV supply feeder, as well as its PV hosting capacity. The proposed indices are directly comparable to results from a probabilistic reliability assessment. The operation of the network is simulated for different PV scenarios to investigate the impacts of increased PV penetration, the location of PV on the feeder, and loading conditions of the MV supply network on the reliability results. It can be seen that all reliability indices improve with increased PV penetration levels when the supply network is heavily loaded and conversely deteriorate when the supply network is lightly loaded. Moreover, bus voltages improve when an on-load tap changer is fitted at the secondary trans-former which leads to better reliability performance as the occurrence and duration of low voltage violations are reduced in all PV scenarios. The approach in this paper is opposed to the conventional reliability assessment, which considers sustained interruptions to customers caused by failure of network components, and thus contributes to a comprehensive analysis of quality of service by considering transient events (i.e., voltage related) in the LV distribution network.