Detalhes
Nome
Ignacio GilCargo
Investigador AuxiliarDesde
05 fevereiro 2024
Nacionalidade
EspanhaCentro
Centro de Sistemas de EnergiaContactos
+351222094000
ignacio.gil@inesctec.pt
2024
Autores
Ndawula, MB; Djokic, SZ; Kisuule, M; Gu, CH; Hernando-Gil, I;
Publicação
SUSTAINABLE ENERGY GRIDS & NETWORKS
Abstract
Reliability analysis of large power networks requires accurate aggregate models of low voltage (LV) networks to allow for reasonable calculation complexity and to prevent long computational times. However, commonly used lumped load models neglect the differences in spatial distribution of demand, type of phase-connection of served customers and implemented protection system components (e.g., single-pole vs three-pole). This paper proposes a novel use of state enumeration (SE) and Monte Carlo simulation (MCS) techniques to formulate more accurate LV network reliability equivalents. The combined SE and MCS method is illustrated using a generic suburban LV test network, which is realistically represented by a reduced number of system states. This approach allows for a much faster and more accurate reliability assessments, where further reduction of system states results in a single-component equivalent reliability model with the same unavailability as the original LV network. Both mean values and probability distributions of standard reliability indices are calculated, where errors associated with the use of single-line models, as opposed to more detailed three-phase models, are quantified.
2024
Autores
Cheng S.; Gil I.H.; Flower I.; Gu C.; Li F.;
Publicação
IEEE Transactions on Power Systems
Abstract
Proactive participation of uncertain renewable generation in the day-ahead (DA) wholesale market effectively reduces the system marginal price and carbon emissions, whilst significantly increasing the volumes of real-time balancing mechanism prices to ensure system security and stability. To solve the conflicting interests over the two timescales, this article: 1) proposes a novel hierarchical optimization model to align with the actual operation paradigms of the hierarchical market, whereby the capacity allocation matrix is adopted to coordinate the DA and balancing markets; 2) mathematically formulates and quantitatively analyses the long-term driving factors of balancing actions, enabling system operators (SOs) to design efficient and well-functioning market structures to meet economic and environmental targets; 3) empowers renewable generating units and flexible loads to participate in the balancing market (BM) as 'active' actors and enforces the non-discriminatory provision of balancing services. The performance of the proposed model is validated on a modified IEEE 39-bus power system and a reduced GB network. Results reveal that with effective resource allocation in different timescales of the hierarchical market, the drop speed of balancing costs soars while the intermittent generation climbs. The proposed methodology enables SOs to make the most of all resources available in the market and balance the system flexibly and economically. It thus safeguards the climate mitigation pathways against the risks of substantially higher balancing costs.
2024
Autores
Zhao, AP; Li, S; Gu, C; Yan, X; Hu, PJ; Wang, Z; Xie, D; Cao, Z; Chen, X; Wu, C; Luo, T; Wang, Z; Hernando-Gil, I;
Publicação
IEEE Journal of Emerging and Selected Topics in Industrial Electronics
Abstract
2024
Autores
Sarwar, FA; Hernando-Gil, I; Vechiu, I;
Publicação
Energy Conversion and Economics
Abstract
2023
Autores
Kisuule, M; Ndawula, MB; Gu, C; Hernando-Gil, I;
Publicação
Energies
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.