Detalhes
Nome
João Diogo FernandesCargo
Assistente de InvestigaçãoDesde
10 janeiro 2022
Nacionalidade
PortugalCentro
Centro de Telecomunicações e MultimédiaContactos
+351222094000
joao.d.fernandes@inesctec.pt
2025
Autores
Nunes, JD; Montezuma, D; Oliveira, D; Pereira, T; Cardoso, JS;
Publicação
MEDICAL IMAGE ANALYSIS
Abstract
Nuclear-derived morphological features and biomarkers provide relevant insights regarding the tumour microenvironment, while also allowing diagnosis and prognosis in specific cancer types. However, manually annotating nuclei from the gigapixel Haematoxylin and Eosin (H&E)-stained Whole Slide Images (WSIs) is a laborious and costly task, meaning automated algorithms for cell nuclei instance segmentation and classification could alleviate the workload of pathologists and clinical researchers and at the same time facilitate the automatic extraction of clinically interpretable features for artificial intelligence (AI) tools. But due to high intra- and inter-class variability of nuclei morphological and chromatic features, as well as H&Estains susceptibility to artefacts, state-of-the-art algorithms cannot correctly detect and classify instances with the necessary performance. In this work, we hypothesize context and attention inductive biases in artificial neural networks (ANNs) could increase the performance and generalization of algorithms for cell nuclei instance segmentation and classification. To understand the advantages, use-cases, and limitations of context and attention-based mechanisms in instance segmentation and classification, we start by reviewing works in computer vision and medical imaging. We then conduct a thorough survey on context and attention methods for cell nuclei instance segmentation and classification from H&E-stained microscopy imaging, while providing a comprehensive discussion of the challenges being tackled with context and attention. Besides, we illustrate some limitations of current approaches and present ideas for future research. As a case study, we extend both a general (Mask-RCNN) and a customized (HoVer-Net) instance segmentation and classification methods with context- and attention-based mechanisms and perform a comparative analysis on a multicentre dataset for colon nuclei identification and counting. Although pathologists rely on context at multiple levels while paying attention to specific Regions of Interest (RoIs) when analysing and annotating WSIs, our findings suggest translating that domain knowledge into algorithm design is no trivial task, but to fully exploit these mechanisms in ANNs, the scientific understanding of these methods should first be addressed.
2023
Autores
Nunes, D; Vourvopoulos, A; Blanco Mora, DA; Jorge, C; Fernandes, J; Bermudez I Badia, S; Figueiredo, P;
Publicação
PloS one
Abstract
Training motor imagery (MI) and motor observation (MO) tasks is being intensively exploited to promote brain plasticity in the context of post-stroke rehabilitation strategies. This may benefit from the use of closed-loop neurofeedback, embedded in brain-computer interfaces (BCI's) to provide an alternative non-muscular channel, which may be further augmented through embodied feedback delivered through virtual reality (VR). Here, we used functional magnetic resonance imaging (fMRI) in a group of healthy adults to map brain activation elicited by an ecologically-valid task based on a VR-BCI paradigm called NeuRow, whereby participants perform MI of rowing with the left or right arm (i.e., MI), while observing the corresponding movement of the virtual arm of an avatar (i.e., MO), on the same side, in a first-person perspective. We found that this MI-MO task elicited stronger brain activation when compared with a conventional MI-only task based on the Graz BCI paradigm, as well as to an overt motor execution task. It recruited large portions of the parietal and occipital cortices in addition to the somatomotor and premotor cortices, including the mirror neuron system (MNS), associated with action observation, as well as visual areas related with visual attention and motion processing. Overall, our findings suggest that the virtual representation of the arms in an ecologically-valid MI-MO task engage the brain beyond conventional MI tasks, which we propose could be explored for more effective neurorehabilitation protocols. Copyright: © 2023 Nunes et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
2022
Autores
Nunes, JD; Carvalho, M; Carneiro, D; Cardoso, JS;
Publicação
IEEE ACCESS
Abstract
The field of Deep Learning (DL) has seen a remarkable series of developments with increasingly accurate and robust algorithms. However, the increase in performance has been accompanied by an increase in the parameters, complexity, and training and inference time of the models, which means that we are rapidly reaching a point where DL may no longer be feasible. On the other hand, some specific applications need to be carefully considered when developing DL models due to hardware limitations or power requirements. In this context, there is a growing interest in efficient DL algorithms, with Spiking Neural Networks (SNNs) being one of the most promising paradigms. Due to the inherent asynchrony and sparseness of spike trains, these types of networks have the potential to reduce power consumption while maintaining relatively good performance. This is attractive for efficient DL and, if successful, could replace traditional Artificial Neural Networks (ANNs) in many applications. However, despite significant progress, the performance of SNNs on benchmark datasets is often lower than that of traditional ANNs. Moreover, due to the non-differentiable nature of their activation functions, it is difficult to train SNNs with direct backpropagation, so appropriate training strategies must be found. Nevertheless, significant efforts have been made to develop competitive models. This survey covers the main ideas behind SNNs and reviews recent trends in learning rules and network architectures, with a particular focus on biologically inspired strategies. It also provides some practical considerations of state-of-the-art SNNs and discusses relevant research opportunities.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.