Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

José Manuel Marques Martins de Almeida é licenciado em Física Aplicada  pela Universidade do Porto, Porto, Portugal. Doutorou-se em Física em 1998 na mesma universidade. Desde 2000 é Professor Associado do Departamento de Física, Universidade de Trás os Montes e Alto Douro, Vila Real, Portugal. Obteve o título de agregado em 2006. Atualmente é investigador do Centro de Fotónica Aplicada do INESC TEC, Porto. Os seus atuais interesses de investigação incluem sensores ópticos, espectroscopia e biofísica.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    José Almeida
  • Cargo

    Investigador Coordenador
  • Desde

    17 setembro 2012
004
Publicações

2025

Gold-coated silver nanorods on side-polished singlemode optical fibers for remote sensing at optical telecommunication wavelengths

Autores
dos Santos, PSS; Mendes, JP; Pastoriza-Santos, I; Juste, JP; de Almeida, JMMM; Coelho, LCC;

Publicação
SENSORS AND ACTUATORS B-CHEMICAL

Abstract
The lower refractive index sensitivity (RIS) of plasmonic nanoparticles (NP) in comparison to their plasmonic thin films counterparts hindered their wide adoption for wavelength-based sensor designs, wasting the NP characteristic field locality. In this context, high aspect-ratio colloidal core-shell Ag@Au nanorods (NRs) are demonstrated to operate effectively at telecommunication wavelengths, showing RIS of 1720 nm/RIU at 1350 nm (O-band) and 2325 nm/RIU at 1550 nm (L-band), representing a five-fold improvement compared to similar Au NRs operating at equivalent wavelengths. Also, these NRs combine the superior optical performance of Ag with the Au chemical stability and biocompatibility. Next, using a side-polished optical fiber, we detected glyphosate, achieving a detection limit improvement from 724 to 85 mg/L by shifting from the O to the C/L optical bands. This work combines the significant scalability and cost-effective advantages of colloidal NPs with enhanced RIS, showing a promising approach suitable for both point-of-care and long-range sensing applications at superior performance than comparable thin film-based sensors in either environmental monitoring and other fields.

2024

Impact of gaseous interferents on palladium expansion for hydrogen optical sensing: A time stability study

Autores
Almeida, MAS; Almeida, JMMMD; Coelho, LCC;

Publicação
OPTICS AND LASER TECHNOLOGY

Abstract
Continuous monitoring of hydrogen (H2) concentration is critical for safer use, which can be done using optical sensors. Palladium (Pd) is the most commonly used transducer material for this monitoring. This material absorbs H2 leading to an isotropic expansion. This process is reversible but is affected by the interaction with interferents, and the lifetime of Pd thin films is a recurring issue. Fiber Bragg Grating (FBG) sensors are used to follow the strain induced by H2 on Pd thin films. In this work, it is studied the stability of Pd-coated FBGs, protected with a thin Polytetrafluoroethylene (PTFE) layer, 10 years after their deposition to assess their viability to be used as H2 sensors for long periods of time. It was found that Pd coatings that were PTFE-protected after deposition had a longer lifetime than unprotected films, with the same sensitivities that they had immediately after their deposition, namely 23 and 10 pm/vol% for the sensors with 150 and 100 nm of Pd, respectively, and a saturation point around 2 kPa. Furthermore, the Pd expansion was analyzed in the presence of H2, nitrogen (N2), carbon dioxide (CO2), methane (CH4) and water vapor (H2O), finding that H2O is the main interferent. Finally, an exhaustive test for 90 h is also done to analyze the long-term stability of Pd films in dry and humid environments, with only the protected sensor maintaining the long-term response. As a result, this study emphasizes the importance of using protective polymeric layers in Pd films to achieve the five-year lifetime required for a real H2 monitoring application.

2024

Observation of Surface Plasmon Polaritons and Bloch Surface Waves in a Metal-Dielectric Photonic Crystal

Autores
Dias, BS; de Almeida, JMMM; Coelho, LCC;

Publicação
IEEE SENSORS JOURNAL

Abstract
The excitation of two different electromagnetic surface waves-surface plasmon polaritons (SPPs) and Bloch surface waves (BSWs)-is demonstrated in a 1-D metal-dielectric photonic crystal with numerical and experimental studies. The discussed structure consists of an Ag-TiO2 thin-film stack forming a metal-insulator-metal-insulator device. The thickness of the TiO2 layer placed between the metals is tested for two different values (50 and 300 nm), which also allows the excitation of guided-mode resonances. It is observed that BSWs in this metal-dielectric structure behave similar to the case of all-dielectric photonic crystals, whereas the SPP modes display similar properties to those excited in metal-insulator-metal cavities. The sensitivity of these surface states to variations in the refractive index (RI) of the external dielectric is characterized. For the case of the plasmonic modes, a maximum sensitivity of (7.2 +/- 0.3) x 10(3) nm/RIU was measured, while for the BSW the maximum sensitivity was (1.20 +/- 0.05) x 10(2) nm/RIU. Due to the large field enhancement and penetration on external media, these surface states display exceptional properties for application in optical sensors, and the presented results provide interesting possibilities in the design of novel sensing structures with a flexible selection of surface states for interrogation.

2024

From localized to propagating surface plasmon resonances in Au nanoparticle-coated optical fiber sensors and its implications in biosensing

Autores
dos Santos, PSS; Mendes, JP; Perez Juste, J; Pastoriza Santos, I; De Almeida, JMMM; Coelho, LCC;

Publicação
PHOTONICS RESEARCH

Abstract
Nanoparticle-based plasmonic optical fiber sensors can exhibit high sensing performance, in terms of refractive index sensitivities (RISs). However, a comprehensive understanding of the factors governing the RIS in this type of sensor remains limited, with existing reports often overlooking the presence of surface plasmon resonance (SPR) phenomena in nanoparticle (NP) assemblies and attributing high RIS to plasmonic coupling or waveguiding effects. Herein, using plasmonic optical fiber sensors based on spherical Au nanoparticles, we investigate the basis of their enhanced RIS, both experimentally and theoretically. The bulk behavior of assembled Au NPs on the optical fiber was investigated using an effective medium approximation (EMA), specifically the gradient effective medium approximation (GEMA). Our findings demonstrate that the Au-coated optical fibers can support the localized surface plasmon resonance (LSPR) as well as SPR in particular scenarios. Interestingly, we found that the nanoparticle sizes and surface coverage dictate which effect takes precedence in determining the RIS of the fiber. Experimental data, in line with numerical simulations, revealed that increasing the Au NP diameter from 20 to 90 nm (15% surface coverage) led to an RIS increase from 135 to 6998 nm/RIU due to a transition from LSPR to SPR behavior. Likewise, increasing the surface coverage of the fiber from 9% to 15% with 90 nm Au nanoparticles resulted in an increase in RIS from 1297 (LSPR) to 6998 nm/RIU (SPR). Hence, we ascribe the exceptional performance of these plasmonic optical fibers primary to SPR effects, as evidenced by the nonlinear RIS behavior. The outstanding RIS of these plasmonic optical fibers was further demonstrated in the detection of thrombin protein, achieving very low limits of detection. These findings support broader applications of high-performance NP-based plasmonic optical fiber sensors in areas such as biomedical diagnostics, environmental monitoring, and chemical analysis. (c) 2024 Chinese Laser Press

2024

Are Aptamer-Based Biosensors the Future of the Detection of the Human Gut Microbiome?-A Systematic Review and Meta-Analysis

Autores
Moreira, MJ; Pintado, M; De Almeida, JMMM;

Publicação
BIOSENSORS-BASEL

Abstract
The gut microbiome is shaped early in life by dietary and lifestyle factors. Specific compounds in the gut affect the growth of different bacterial species and the production of beneficial or harmful byproducts. Dysbiosis of the gut microbiome has been linked to various diseases resulting from the presence of harmful bacteria and their byproducts. Existing methods for detecting microbial species, such as microscopic observation and molecular biological techniques, are costly, labor-intensive, and require skilled personnel. Biosensors, which integrate a recognition element, transducer, amplifier, signal processor, and display unit, can convert biological events into electronic signals. This review provides a comprehensive and systematic survey of scientific publications from 2018 to June 2024, obtained from ScienceDirect, PubMed, and Scopus databases. The aim was to evaluate the current state-of-the-art and identify knowledge gaps in the application of aptamer biosensors for the determination of gut microbiota. A total of 13 eligible publications were categorized based on the type of study: those using microbial bioreceptors (category 1) and those using aptamer bioreceptors (category 2) for the determination of gut microbiota. Point-of-care biosensors are being developed to monitor changes in metabolites that may lead to disease. They are well-suited for use in the healthcare system and offer an excellent alternative to traditional methods. Aptamers are gaining attention due to their stability, specificity, scalability, reproducibility, low production cost, and low immunogenicity. While there is limited research on using aptamers to detect human gut microbiota, they show promise for providing accurate, robust, and cost-effective diagnostic methods for monitoring the gut microbiome.

Teses
supervisionadas

2022

Sensores ópticos para medição de campos magnéticos baseados em ondas eletromagnéticas de superfície

Autor
João Pedro Miranda Carvalho

Instituição
UTAD

2022

Development of optical biosensors for monitoring the deterioration of fresh meat and fish

Autor
Helena Catarina Araújo Soares Guedes Vasconcelos

Instituição
UTAD

2022

Wireless optical fibre sensors network for the health monitoring of concrete structures

Autor
Pedro Miguel Madeira da Silva

Instituição
UTAD

2022

Development of cost-effective monitoring systems for chemical water contamination using nanoparticle coated optical fibre sensors

Autor
Paulo Sérgio Soares dos Santos

Instituição
UTAD

2022

Wireless optical fibre sensors network for the health monitoring of concrete structures

Autor
Pedro Miguel Madeira da Silva

Instituição
UTAD