Detalhes
Nome
José LimaCargo
Investigador Colaborador ExternoDesde
01 junho 2009
Nacionalidade
PortugalCentro
Centro de Robótica Industrial e Sistemas InteligentesContactos
+351220413317
jose.lima@inesctec.pt
2024
Autores
Klein, LC; Chellal, AA; Grilo, V; Braun, J; Gonçalves, J; Pacheco, MF; Fernandes, FP; Monteiro, FC; Lima, J;
Publicação
SENSORS
Abstract
The accurate measurement of joint angles during patient rehabilitation is crucial for informed decision making by physiotherapists. Presently, visual inspection stands as one of the prevalent methods for angle assessment. Although it could appear the most straightforward way to assess the angles, it presents a problem related to the high susceptibility to error in the angle estimation. In light of this, this study investigates the possibility of using a new approach to angle calculation: a hybrid approach leveraging both a camera and LiDAR technology, merging image data with point cloud information. This method employs AI-driven techniques to identify the individual and their joints, utilizing the cloud-point data for angle computation. The tests, considering different exercises with different perspectives and distances, showed a slight improvement compared to using YOLO v7 for angle calculation. However, the improvement comes with higher system costs when compared with other image-based approaches due to the necessity of equipment such as LiDAR and a loss of fluidity during the exercise performance. Therefore, the cost-benefit of the proposed approach could be questionable. Nonetheless, the results hint at a promising field for further exploration and the potential viability of using the proposed methodology.
2024
Autores
Brito, T; Pereira, AI; Costa, P; Lima, J;
Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT II, OL2A 2023
Abstract
Worldwide, forests have been harassed by fire in recent years. Either by human intervention or other reasons, the history of the burned area is increasing considerably, harming fauna and flora. It is essential to detect an early ignition for fire-fighting authorities can act quickly, decreasing the impact of forest damage impacts. The proposed system aims to improve nature monitoring and improve the existing surveillance systems through satellite image recognition. The soil recognition via satellite images can determine the sensor modules' best position and provide crucial input information for artificial intelligence-based systems. For this, satellite images from the Sentinel-2 program are used to generate forest density maps as updated as possible. Four classification algorithms make the Tree Cover Density (TCD) map, consisting of the Gaussian Mixture Model (GMM), Random Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbors (K-NN), which identify zones by training known regions. The results demonstrate a comparison between the algorithms through their performance in recognizing the forest, grass, pavement, and water areas by Sentinel-2 images.
2024
Autores
Valente, D; Brito, T; Correia, M; Carvalho, JA; Lima, J;
Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT I, OL2A 2023
Abstract
The Internet of Things (IoT) has revolutionized how objects and devices interact, creating new possibilities for seamless connectivity and data exchange. This paper presents a unique and effective method for transferring images via the Message Queuing Telemetry Transport (MQTT) protocol in an encrypted manner. The image is split into multiple messages, with each carrying a segment of the image, and employ top-notch encryption techniques to ensure secure communication. Applying this process, the message payload is split into smaller segments, and consequently, it minimizes the network bandwidth impact while mitigating potential of packet loss or latency issues. Furthermore, by applying encryption techniques, we guarantee the confidentiality and integrity of the image data during transmission, safeguarding against unauthorized access or tampering. Our experiments in a real-world scenario involving remote indicator panels with LEDs verify the effectiveness of our approach. By using our proposed method, we successfully transmit images over MQTT, achieving secure and reliable data transfer while ensuring the integrity of the image content. Our results demonstrate the feasibility and effectiveness of the proposed approach for image transfer in IoT applications. The combination of message segmentation, MQTT protocol, and encryption techniques offers a practical solution for transmitting images in resource-constrained IoT networks while maintaining data security. This approach can be applied in different applications.
2024
Autores
Klein, LC; Chellal, AA; Grilo, V; Gonçalves, J; Pacheco, MF; Fernandes, FP; Monteiro, FC; Lima, J;
Publicação
OPTIMIZATION, LEARNING ALGORITHMS AND APPLICATIONS, PT II, OL2A 2023
Abstract
Angle assessment is crucial in rehabilitation and significantly influences physiotherapists' decision-making. Although visual inspection is commonly used, it is known to be approximate. This work aims to be a preliminary study about using the AI image-based to assess upper limb joint angles. Two main frameworks were evaluated: MediaPipe and Yolo v7. The study was performed with 28 participants performing four upper limb movements. The results showed that Yolo v7 achieved greater estimation accuracy than Mediapipe, with MAEs of around 5 degrees and 17 degrees, respectively. However, even with better results, Yolo v7 showed some limitations, including the point of detection in only a 2D plane, the higher computational power required to enable detection, and the difficulty of performing movements requiring more than one degree of Freedom (DOF). Nevertheless, this study highlights the detection capabilities of AI approaches, showing be a promising approach for measuring angles in rehabilitation activities, representing a cost-effective and easy-to-implement solution.
2024
Autores
Chellal, AA; Braun, J; Bonzatto, L Jr; Faria, M; Kalbermatter, RB; Gonçalves, J; Costa, P; Lima, J;
Publicação
SYNERGETIC COOPERATION BETWEEN ROBOTS AND HUMANS, VOL 1, CLAWAR 2023
Abstract
As robots have limited power sources. Energy optimization is essential to ensure an extension for their operating periods without needing to be recharged, thus maximizing their uptime and minimizing their running costs. This paper compares the energy consumption of different mobile robotic platforms, including differential, omnidirectional 3-wheel, omnidirectional 4-wheel, and Mecanum platforms. The comparison is based on the RobotAtFactory 4.0 competition that typically takes place during the Portuguese Robotics Open. The energy consumption from the batteries for each platform is recorded and compared. The experiments were conducted in a validated simulation environment with dynamic and friction models to ensure that the platforms operated at similar speeds and accelerations and through a 5200 mAh battery simulation. Overall, this study provides valuable information on the energy consumption of different mobile robotic platforms. Among other findings, differential robots are the most energy-efficient robots, while 4-wheel omnidirectional robots may offer a good balance between energy efficiency and maneuverability.
Teses supervisionadas
2021
Autor
Francisco Ribeiro Pereira da Silva
Instituição
IES_Outra-IES_Outra
2021
Autor
Hugo Lima Mendonça
Instituição
IES_Outra-IES_Outra
2021
Autor
João Marcelo Casanova Almeida Tomé Santos
Instituição
IES_Outra-IES_Outra
2021
Autor
Marco António Mendonça Rocha
Instituição
IES_Outra-IES_Outra
Autor
Stéphanie Coelho Monteiro
Instituição
IPB
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.