Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Educação        

MSc e PhD em Electrical Engineering, Syracuse University, NY, USA, (1979 e 1983).

Licenciatura em Engenharia Electrotécnica, Universidade do Porto (1973).

 

Ensino             

Professor Catedrático, Faculdade de Engenharia da Universidade do Porto (FEUP), Departamento de Engenharia Electrotécnica e de Computadores, desde 2000. Jubilado em Outubro de 2021.

Ensinou nas áreas da Microelectrónica (VLSI), Projecto e Teste de circuitos integrados digitais e mixed-signal, Sistemas Digitais e Arquitetura de Computadroes, na FEUP e na Universidade de Syracuse (Visiting Assistant Professor, 1986/87). Orientador de 6 doutoramentos.

Investigação e Desenvolvimento

Investigador do INESC TEC (www.inesctec.pt), desde 1988, onde fundou e liderou o Grupo de CAD e Microelectrónica, até 2001. Responsável pela participação do Grupo e investigador em projectos de investigação europeus com universidades e parceiros industriais.

  • ASSOCIATE – Advanced Solutions for SoC Innovative Testing in Europe (2001-2004);
  • DYNAD – Digital/Analog Converter Testing (1998-2001);
  • MAGIA – Dedicated HW for an Industrial Textile Nesting Application (1998-2000);
  • AIPAC – ASIC-based System Design and Integration (1995-1996);
  • CHIPSHOP – Low Cost IC Prototyping Services for European SMEs;
  • ARTEMIS – Mixed-Signal Testing (1992-1995);
  • AICI – ESPRIT Special Action for Microelectronics in Portugal (1990-1995);
  • BST – Boundary Scan Test (1989-1992)

Liderou acções de formação avançada em Microelectrónica dirigidas a empresas localizadas em Portugal, como a ChipIdea, MIPS, SIEMENS, Infineon e Qimonda.

Visiting Research Associate no CASE Center, Syracuse University, (1986/1987) e R&D Engineer no Electronics Laboratory (ELab), da General Electric Company, Syracuse, NY, USA (1983-84).


Lista de publicações disponível em www.orcid.org/0000-0002-0496-6975.

                           

Gestão universitária e extensão

Diretor do PDEEC, Programa Doutoral em Engenharia Electrotécnica e de Computadores (2016-2021).

Diretor do PDEPP, Programa Doutoral em Engenharia e Políticas Públicas (2011-2016), que ajudou a fundar.

Presidente do Conselho de Representantes da FEUP (2014-2016). 

Director do Departamento de Engenharia Electrotécnica e de Computadores (DEEC) da FEUP (2001 – 2010).

Director da Licenciatura em Engenharia Electrotécnica (1992-2001). 

Presidente do Conselho Pedagógico da FEUP (1993-1999).

Delegado Nacional e representante do Governo Português nos Comités de Gestão de todos os Programas Europeus de I&D na área das Tecnologias da Informação, desde o ESPRIT (1994-2001), incluindo o 6º e 7º Programas Quadro (2001-2006 e 2007-2014) e o Horizon 2020 (2014-2020).

Membro de Program Committees e Steering Committees de Conferências Internacionais (DCIS, EUROMICRO DSD, ICECS, ISQED). 

General Chair: EUROMICRO Conference on Digital System Design (DSD 2005 e 2015) e Design of Circuits and Integrated Systems (DCIS 2001).

Guest Editor do International Journal of Embedded Hardware Design (MICPRO), Elsevier, e no International Journal of Analog Integrated Circuits and Signal Processing, Kluwer. 

Membro do Board of Directors do EUROMICRO (www.euromicro.org) e Senior Member do IEEE.


Professor Emérito da Universidade do Porto, 2023.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    José Silva Matos
  • Cargo

    Investigador Coordenador
  • Desde

    01 janeiro 1985
Publicações

2016

Scalable hardware architecture for disparity map computation and object location in real-time

Autores
Santos, PM; Ferreira, JC; Matos, JS;

Publicação
JOURNAL OF REAL-TIME IMAGE PROCESSING

Abstract
We present the disparity map computation core of a hardware system for isolating foreground objects in stereoscopic video streams. The operation is based on the computation of dense disparity maps using block-matching algorithms and two well-known metrics: sum of absolute differences and Census transform. Two sets of disparity maps are computed by taking each of the images as reference so that a consistency check can be performed to identify occluded pixels and eliminate spurious foreground pixels. Taking advantage of parallelism, the proposed architecture is highly scalable and provides numerous degrees of adjustment to different application needs, performance levels and resource usage. A version of the system for 640 x 480 images and a maximum disparity of 135 pixels was implemented in a system based on a Xilinx Virtex II-Pro FPGA and two cameras with a frame rate of 25 fps (less than the maximum supported frame rate of 40 fps on this platform). Implementation of the same system on a Virtex-5 FPGA is estimated to achieve 80 fps, while a version with increased parallelism is estimated to run at 140 fps (which corresponds to the calculation of more than 5.9 x 10(9) disparity-pixels per second).

2014

From Boolean algebra to processor architecture and assembly programming in one semester

Autores
Matos, JS; Alves, JC; Mendonca, HS; Araujo, AJ;

Publicação
Proceedings of the 2014 29th Conference on Design of Circuits and Integrated Systems, DCIS 2014

Abstract
The paper presents the approach followed at the Faculty of Engineering of the University of Porto, to introduce design automation tools and structured design techniques in the first course on digital system design of our Integrated Master in Electrical and Computer Engineering. Digital Systems Laboratory is an introductory course on digital design, with the classical task of teaching Boolean algebra and combinational and sequential circuit design, using gates, flip-flops and medium complexity components/function blocks like counters and shift-registers. The need to cope with new curriculum requirements and modern digital design demands, motivated an extensive reformulation of the course contents and organization, leading to the introduction of the use of hardware description languages and synthesis tools, in order to implement small systems, of increasingly complex nature, on an FPGA platform. At the same time its coverage was extended to include low-level processor architecture issues, and to teach assembly programming for the MIPS processor. The paper describes how this reformulation was carried out. It presents the course contents and timeline, and discusses the main choices that were made. The paper also describes the laboratory experiments that were developed and discusses some of the challenges and results obtained so far. © 2014 IEEE.

2008

Estimation of analogue-to-digital converter's signal-to-noise plus distortion ratio using the code histogram method

Autores
Mendonca, HS; da Silva, JM; Matos, JS;

Publicação
IET SCIENCE MEASUREMENT & TECHNOLOGY

Abstract
A procedure is proposed to estimate an analogue-to-digital converter's signal-to-noise plus distortion ratio using the histogram method. The procedure provides results that are in close agreement with the ones obtained with the spectral analysis and sinewave fitting methods. It is shown that the errors obtained by using former implementations of the histogram method are due to not considering the input stimulus probability density function, and it is shown how these errors can be rectified.

2007

Design of circuits and integrated systems

Autores
Teixeira, JP; Matos, JS; Tomas, J; Teixeira, IC;

Publicação
IET COMPUTERS AND DIGITAL TECHNIQUES

Abstract

2005

A processor for testing mixed-signal cores in System-on-Chip

Autores
Duarte, F; da Silva, JM; Alves, JC; Pinho, GA; Matos, JS;

Publicação
DSD 2005: 8th Euromicro Conference on Digital System Design, Proceedings

Abstract
This paper describes the design of a processor specific for testing cores embedded in system-on-chip. This processor which can be implemented within a system's reconfigurable area, shall be responsible for scheduling and control test operations and perform preliminary data processing, as well as to provide the interface with an external tester Building these test operations on-chip allows for simplifying external tester interface and to reduce testing time. The testing procedure and the infrastructure required to test an AID converter is described as an example.