Detalhes
Nome
Luís Manuel FerreiraCargo
Assistente de InvestigaçãoDesde
07 março 2018
Nacionalidade
PortugalCentro
Laboratório de Software ConfiávelContactos
+351253604440
luis.m.ferreira@inesctec.pt
2024
Autores
Ferreira, LMM; Coelho, F; Pereira, J;
Publicação
ACM COMPUTING SURVEYS
Abstract
While a significant number of databases are deployed in cloud environments, pushing part or all data storage and querying planes closer to their sources (i.e., to the edge) can provide advantages in latency, connectivity, privacy, energy, and scalability. This article dissects the advantages provided by databases in edge and fog environments by surveying application domains and discussing the key drivers for pushing database systems to the edge. At the same time, it also identifies the main challenges faced by developers in this new environment and analyzes the mechanisms employed to deal with them. By providing an overview of the current state of edge and fog databases, this survey provides valuable insights into future research directions.
2023
Autores
Ferreira, LM; Coelho, F; Pereira, JO;
Publicação
Joint Proceedings of Workshops at the 49th International Conference on Very Large Data Bases (VLDB 2023), Vancouver, Canada, August 28 - September 1, 2023.
Abstract
There is a growing demand for persistent data in IoT, edge and similar resource-constrained devices. However, standard FLASH memory-based solutions present performance, energy, and reliability limitations in these applications. We propose MRAM persistent memory as an alternative to FLASH based storage. Preliminary experimental results show that its performance, power consumption, and reliability in typical database workloads is competitive for resource-constrained devices. This opens up new opportunities, as well as challenges, for small-scale database systems. MRAM is tested for its raw performance and applicability to key-value and relational database systems on resource-constrained devices. Improvements of as much as three orders of magnitude in write performance for key-value systems were observed in comparison to an alternative NAND FLASH based device. © 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
2023
Autores
Coelho, F; Alonso, AN; Ferreira, L; Pereira, J; Oliveira, R;
Publicação
PROCEEDINGS OF12TH LATIN-AMERICAN SYMPOSIUM ON DEPENDABLE AND SECURE COMPUTING, LADC 2023
Abstract
Cloud native database systems provide highly available and scalable services as part of cloud platforms by transparently replicating and partitioning data across automatically managed resources. Some systems, such as Google Spanner, are designed and implemented from scratch. Others, such as Amazon Aurora, derive from traditional database systems for better compatibility but disaggregate storage to cloud services. Unfortunately, because they follow an open-box approach and fork the original code base, they are difficult to implement and maintain. We address this problem with Loom, a replicated and partitioned database system built on top of PostgreSQL that delegates durable storage to a distributed log native to the cloud. Unlike previous disaggregation proposals, Loom is a closed-box approach that uses the original server through existing interfaces to simplify implementation and improve robustness and maintainability. Experimental evaluation achieves 6x higher throughput and 5x lower response time than standard replication and competes with the state of the art in cloud and HPC hardware.
2020
Autores
Ferreira, L; Coelho, F; Pereira, J;
Publicação
Distributed Applications and Interoperable Systems - 20th IFIP WG 6.1 International Conference, DAIS 2020, Held as Part of the 15th International Federated Conference on Distributed Computing Techniques, DisCoTec 2020, Valletta, Malta, June 15-19, 2020, Proceedings
Abstract
Fault-tolerance is a core feature in distributed database systems, particularly the ones deployed in cloud environments. The dependability of these systems often relies in middleware components that abstract the DBMS logic from the replication itself. The highly configurable nature of these systems makes their throughput very dependent on the correct tuning for a given workload. Given the high complexity involved, machine learning techniques are often considered to guide the tuning process and decompose the relations established between tuning variables. This paper presents a machine learning mechanism based on reinforcement learning that attaches to a hybrid replication middleware connected to a DBMS to dynamically live-tune the configuration of the middleware according to the workload being processed. Along with the vision for the system, we present a study conducted over a prototype of the self-tuned replication middleware, showcasing the achieved performance improvements and showing that we were able to achieve an improvement of 370.99% on some of the considered metrics. © IFIP International Federation for Information Processing 2020.
2019
Autores
Ferreira, L; Coelho, F; Alonso, AN; Pereira, J;
Publicação
CLOSER: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND SERVICES SCIENCE
Abstract
In the context of the CloudDBAppliance (CDBA) project, fault tolerance and high-availability are provided in layers: within each appliance, within a data centre and between data centres. This paper presents the proposed replication architecture for providing fault tolerance and high availability within a data centre. This layer configuration, along with specific deployment constraints require a custom replication architecture. In particular, replication must be implemented at the middleware-level, to avoid constraining the backing operational database. This paper is focused on the design of the CDBA Replication Manager along with an evaluation, using micro-benchmarking, of components for the replication middleware. Results show the impact, on both throughput and latency, of the replication mechanisms in place.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.