Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Investigador Auxiliar do CRAS, doutorado em Engenharia Eletrotécnica e de Computadores, no Departamento de Eletrónica Industrial da Universidade do Minho, em Dezembro de 2013. Desenvolvo transdutores de ultrassons piezoelétricos aplicados a comunicações sem fios em ambientes subaquáticos e desenvolvo diferentes sensores de baixo custo e tamanho reduzido. Participo e/ou lidero a execução de um total de 14 Projetos de P&D com financiamento competitivo, dos quais 2 como IP e 4 como Co-PI.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Marcos Martins
  • Cargo

    Investigador Auxiliar
  • Desde

    01 junho 2022
  • Nacionalidade

    Portugal
  • Contactos

    +351220413233
    marcos.martins@inesctec.pt
001
Publicações

2024

The Influence of Hydroxyapatite Crystals on the Viscoelastic Behavior of Poly(vinyl alcohol) Braid Systems

Autores
Quinaz, T; Freire, TF; Olmos, A; Martins, M; Ferreira, FBN; de Moura, MFSM; Zille, A; Nguyen, Q; Xavier, J; Dourado, N;

Publicação
BIOMIMETICS

Abstract
Composites of poly(vinyl alcohol) (PVA) in the shape of braids, in combination with crystals of hydroxyapatite (HAp), were analyzed to perceive the influence of this bioceramic on both the quasi-static and viscoelastic behavior under tensile loading. Analyses involving energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM) allowed us to conclude that the production of a homogeneous layer of HAp on the braiding surface and the calcium/phosphate atomic ratio were comparable to those of natural bone. The maximum degradation temperature established by thermogravimetric analysis (TGA) showed a modest decrease with the addition of HAp. By adding HAp to PVA braids, an increase in the glass transition temperature (Tg) is noticed, as demonstrated by dynamic mechanical analysis (DMA) and differential thermal analysis (DTA). The PVA/HAp composite braids' peaks were validated by Fourier transform infrared (FTIR) spectroscopy to be in good agreement with common PVA and HAp patterns. PVA/HAp braids, a solution often used in the textile industry, showed superior overall mechanical characteristics in monotonic tensile tests. Creep and relaxation testing showed that adding HAp to the eight and six-braided yarn architectures was beneficial. By exhibiting good mechanical performance and most likely increased biological qualities that accompany conventional care for bone applications in the fracture healing field, particularly multifragmentary ones, these arrangements can be applied as a fibrous fixation system.

2023

Marine Sensors: Recent Advances and Challenges

Autores
Gontalves, L; Martins, MS; Lima, RA; Minas, G;

Publicação
SENSORS

Abstract
The ocean has a huge impact on our way of life; therefore, there is a need to monitor and protect its biodiversity [...].

2023

On the evaluation of strain energy release rate of cement-bone bonded joints under mode II loading

Autores
Campos, TD; Barbosa, MLS; Martins, M; Pereira, FAM; de Moura, MFSF; Nguyen, Q; Zille, A; Dourado, N;

Publicação
THEORETICAL AND APPLIED FRACTURE MECHANICS

Abstract
Bone cements based on poly(methylmethacrylate) (PMMA) are primarily used in joint replacement surgeries. In the fixation of joint replacement, the self-curing cement fills constitutes a very important interface. To under-stand and improve the interaction between cortical bone and bone cement it is essential to characterize the mechanical properties of cement-bone bonded joints in full detail. In this study, the end-notched flexure test was used in the context of pure mode II fracture characterisation of cement-bone bonded joints. A data reduction scheme based on crack equivalent concept was employed to overcome the difficulties inherent to crack length monitoring during damage propagation. A finite element method combined with a cohesive zone model was first used to validate numerically the adopted method. The procedure was subsequently applied to experimental results to determine the fracture toughness of cement-bone bonded joints under pure mode II loading. The consistency of the obtained results leads to the conclusion that the adopted procedure is adequate to carry out fracture characterisation of these joints under pure mode II loading. The innovative aspect of the present work lies in the application of cohesive zone modelling approach to PMMA-based cement-bone bonded joints.

2023

Design and In Situ Validation of Low-Cost and Easy to Apply Anti-Biofouling Techniques for Oceanographic Continuous Monitoring with Optical Instruments

Autores
Matos, T; Pinto, V; Sousa, P; Martins, M; Fernandez, E; Henriques, R; Goncalves, LM;

Publicação
SENSORS

Abstract
Biofouling is the major factor that limits long-term monitoring studies with automated optical instruments. Protection of the sensing areas, surfaces, and structural housing of the sensors must be considered to deliver reliable data without the need for cleaning or maintenance. In this work, we present the design and field validation of different techniques for biofouling protection based on different housing materials, biocides, and transparent coatings. Six optical turbidity probes were built using polylactic acid (PLA), acrylonitrile butadiene styrene (ABS), PLA with copper filament, ABS coated with PDMS, ABS coated with epoxy and ABS assembled with a system for in situ chlorine production. The probes were deployed in the sea for 48 days and their anti-biofouling efficiency was evaluated using the results of the field experiment, visual inspections, and calibration signal loss after the tests. The PLA and ABS were used as samplers without fouling protection. The probe with chlorine production outperformed the other techniques, providing reliable data during the in situ experiment. The copper probe had lower performance but still retarded the biological growth. The techniques based on transparent coatings, epoxy, and PDMS did not prevent biofilm formation and suffered mostly from micro-biofouling.

2023

4-FSK High-Speed Underwater Acoustic Communication System

Autores
Araujo, L; Matos, T; Cabral, J; Martins, M;

Publicação
OCEANS 2023 - LIMERICK

Abstract
Oceans all over the world are an important way of sustainability in the lives of many people and have a high impact on the economy of most of the coastal countries. With the growth of underwater activity provided by the development of autonomous and remotely controlled vehicles and with the appearance of new underwater sensors, there is also a need to develop and design more robust underwater wireless networks to provide better and faster communications among the devices connected to the network. Nowadays several technologies provide wireless underwater communications. In this work, we address acoustic technology and the implementation of an acoustic communication system which applies a version of frequency modulation. The main goal of this work is to study the 4-FSK modulation technique and verify the efficiency of the communication system according to variables such as communication distance and baud rate. This implementation uses FPGA systems and Xilinx Vitis Model Composer software and MATLAB Simulink software for simulation. The developed communication system was tested in a controlled environment at two stages: aquarium and pool. The tests were carried out transmitting at 3 different baud rates (40, 100 and 200 kbps) in a distance of 100 cm in the aquarium and 5 meters in the pool.

Teses
supervisionadas

2023

Estudo do sistema de portas dos fornos Bur-in

Autor
Nuno Costa

Instituição
UM

2022

Desenvolvimento de um sensor acústico para medição da corrente marítima

Autor
Rafael CAchetas Pereira

Instituição
UM

2022

Deep-Sea Acoustic Transducers development

Autor
João Luis Lopes e Rocha

Instituição
UM

2022

Sediment circulation and accumulation sensors for in-situ continuous monitoring

Autor
Tiago André Rodrigues de Matos

Instituição
UM

2022

Otimização de um sensor pH para monitorização marinha

Autor
Ana Gabriela Vaz Viana

Instituição
UM