Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Maria Inês Pereira
  • Cargo

    Assistente de Investigação
  • Desde

    17 fevereiro 2020
002
Publicações

2023

Energy Efficient Path Planning for 3D Aerial Inspections

Autores
Claro, RM; Pereira, MI; Neves, FS; Pinto, AM;

Publicação
IEEE ACCESS

Abstract
The use of Unmanned Aerial Vehicles (UAVs) in different inspection tasks is increasing. This technology reduces inspection costs and collects high quality data of distinct structures, including areas that are not easily accessible by human operators. However, the reduced energy available on the UAVs limits their flight endurance. To increase the autonomy of a single flight, it is important to optimize the path to be performed by the UAV, in terms of energy loss. Therefore, this work presents a novel formulation of the Travelling Salesman Problem (TSP) and a path planning algorithm that uses a UAV energy model to solve this optimization problem. The novel TSP formulation is defined as Asymmetric Travelling Salesman Problem with Precedence Loss (ATSP-PL), where the cost of moving the UAV depends on the previous position. The energy model relates each UAV movement with its energy consumption, while the path planning algorithm is focused on minimizing the energy loss of the UAV, ensuring that the structure is fully covered. The developed algorithm was tested in both simulated and real scenarios. The simulated experiments were performed with realistic models of wind turbines and a UAV, whereas the real experiments were performed with a real UAV and an illumination tower. The inspection paths generated presented improvements over 24% and 8%, when compared with other methods, for the simulated and real experiments, respectively, optimizing the energy consumption of the UAV.

2023

ATLANTIS Coastal Testbed: A near-real playground for the testing and validation of robotics for O&M

Autores
Pinto, AM; Marques, JVA; Abreu, N; Campos, DF; Pereira, MI; Gonçalves, E; Campos, HJ; Pereira, P; Neves, F; Matos, A; Govindaraj, S; Durand, L;

Publicação
OCEANS 2023 - LIMERICK

Abstract
The demonstration of robotic technologies in real environments is essential for technology developers and end-users to fully showcase the benefits of theirs solutions, and contributes to the promotion of the transition of inspection and maintenance methodologies towards automated robotic strategies. However, before allowing technologies to be demonstrated in real, operating offshore wind-farms, there is a need to de-risk the technology, to ensure its safe operation offshore. As part of the ATLANTIS project, a pioneer pilot infrastructure, the ATLANTIS Test Centre, was installed in Viana do Castelo, Portugal. This infrastructure will allow the demonstration of key enabling robotic technologies for offshore inspection and maintenance. The Test Centre is composed of two distinct testbeds, and a supervisory control centre, enabling the de-risking, testing, validation and demonstration of technologies, in both near-real and real environments. This paper presents the details of the Coastal Testbed of the ATLANTIS Test Centre, from implementation to available resources and infrastructures and environment details.

2022

Multiple Vessel Detection in Harsh Maritime Environments

Autores
Duarte, DF; Pereira, MI; Pinto, AM;

Publicação
MARINE TECHNOLOGY SOCIETY JOURNAL

Abstract
Recently, research concerning the navigation of autonomous surface vehicles (ASVs) has been increasing. However, a large-scale implementation of these vessels is still held back by several challenges such as multi-object tracking. Attaining accurate object detection plays a big role in achieving successful tracking. This article presents the development of a detection model with an image-based Con-volutional Neural Network trained through transfer learning, a deep learning tech-nique. To train, test, and validate the detector module, data were collected with the SENSE ASV by sailing through two nearby ports, Leixoes and Viana do Castelo, and recording video frames through its on-board cameras, along with a Light De-tection And Ranging, GPS, and Inertial Measurement Unit data. Images were ex-tracted from the collected data, composing a manually annotated dataset with nine classes of different vessels, along with data from other open-source maritime datasets. The developed model achieved a class mAP@[.5 .95] (mean average precision) of 89.5% and a clear improvement in boat detection compared to a multi-purposed state-of-the-art detector, YOLO-v4, with a 22.9% and 44.3% increase in the mAP with an Intersection over Union threshold of 50% and the mAP@[.5 .95], respectively. It was integrated in a detection and tracking system, being able to continuously detect nearby vessels and provide sufficient informa-tion for simple navigation tasks.

2022

Multiple Vessel Detection in Harsh Maritime Environments

Autores
Duarte, DF; Pereira, MI; Pinto, AM;

Publicação
Marine Technology Society Journal

Abstract
Abstract Recently, research concerning the navigation of autonomous surface vehicles (ASVs) has been increasing. However, a large-scale implementation of these vessels is still held back by several challenges such as multi-object tracking. Attaining accurate object detection plays a big role in achieving successful tracking. This article presents the development of a detection model with an image-based Convolutional Neural Network trained through transfer learning, a deep learning technique. To train, test, and validate the detector module, data were collected with the SENSE ASV by sailing through two nearby ports, Leixões and Viana do Castelo, and recording video frames through its on-board cameras, along with a Light Detection And Ranging, GPS, and Inertial Measurement Unit data. Images were extracted from the collected data, composing a manually annotated dataset with nine classes of different vessels, along with data from other open-source maritime datasets. The developed model achieved a class mAP@[.5 .95] (mean average precision) of 89.5% and a clear improvement in boat detection compared to a multi-purposed state-of-the-art detector, YOLO-v4, with a 22.9% and 44.3% increase in the mAP with an Intersection over Union threshold of 50% and the mAP@[.5 .95], respectively. It was integrated in a detection and tracking system, being able to continuously detect nearby vessels and provide sufficient information for simple navigation tasks.

2021

A 3-D Lightweight Convolutional Neural Network for Detecting Docking Structures in Cluttered Environments

Autores
Pereira, MI; Leite, PN; Pinto, AM;

Publicação
MARINE TECHNOLOGY SOCIETY JOURNAL

Abstract
The maritime industry has been following the paradigm shift toward the automation of typically intelligent procedures, with research regarding autonomous surface vehicles (ASVs) having seen an upward trend in recent years. However, this type of vehicle cannot be employed on a full scale until a few challenges are solved. For example, the docking process of an ASV is still a demanding task that currently requires human intervention. This research work proposes a volumetric convolutional neural network (vCNN) for the detection of docking structures from 3-D data, developed according to a balance between precision and speed. Another contribution of this article is a set of synthetically generated data regarding the context of docking structures. The dataset is composed of LiDAR point clouds, stereo images, GPS, and Inertial Measurement Unit (IMU) information. Several robustness tests carried out with different levels of Gaussian noise demonstrated an average accuracy of 93.34% and a deviation of 5.46% for the worst case. Furthermore, the system was fine-tuned and evaluated in a real commercial harbor, achieving an accuracy of over 96%. The developed classifier is able to detect different types of structures and works faster than other state-of-the-art methods that establish their performance in real environments.