Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Pedro Emanuel de Alves Guedes nasceu no Porto, Portugal, em 1995. Concluiu a licenciatura em Engenharia Electrotécnica e de Computadores em 2016 no Instituto Politécnico do Porto - Escola Superior de Engenharia do Porto. Também obteve o grau de Mestre em Sistemas Autónomos na mesma instituição, em 2019. Actualmente, está a realizar um Doutoramento em Engenharia Electrotécnica e de Computadores na Faculdade de Engenharia da Universidade do Porto, desde que lhe foi concedida uma Bolsa de Doutoramento da Fundação para a Ciência e a Tecnologia (FCT) em 2021. Além disso, desempenha a função de Assistente Convidado no Instituto Superior de Engenharia do Porto.

O Pedro tem estado activamente envolvido como Investigador em dois projectos: MYTAG durante o seu mestrado e NETTAG+ durante o seu doutoramento no INESC TEC - Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência. A sua investigação no doutoramento centra-se no processamento de imagens acústicas subaquáticas geradas por Multibeam para a classificação e deteção de lixo marinho através de algoritmos de machine learning e redes neuronais. 

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Pedro Emanuel Guedes
  • Cargo

    Assistente de Investigação
  • Desde

    01 setembro 2021
Publicações

2024

Multibeam Multi-Frequency Characterization of Water Column Litter

Autores
Guedes, PA; Silva, H; Wang, S; Martins, A; Almeida, JM; Silva, E;

Publicação
OCEANS 2024 - SINGAPORE

Abstract
This paper explores the potential use of acoustic imaging and the use of a multi-frequency multibeam-echosounder (MBES) for monitoring marine litter in the water column. The main goal is to perform a test and validation setup using a simulation and actual experimental setup to determine if the MBES data can detect marine litter in a water column image (WCI) and if using multi-frequency MBES data will allow to better distinguish and characterize marine litter debris in detection applications. Results using simulated HoloOcean Environment and actual marine litter data revealed the successful detection of objects commonly found in ocean litter hotspots at various ranges and frequencies, enablingthe pursue of novel means of automatic detection and classification in MBES WCI data while using multi-frequency capabilities.

2024

Acoustic Imaging Learning-Based Approaches for Marine Litter Detection and Classification

Autores
Guedes, PA; Silva, HM; Wang, S; Martins, A; Almeida, J; Silva, E;

Publicação
JOURNAL OF MARINE SCIENCE AND ENGINEERING

Abstract
This paper introduces an advanced acoustic imaging system leveraging multibeam water column data at various frequencies to detect and classify marine litter. This study encompasses (i) the acquisition of test tank data for diverse types of marine litter at multiple acoustic frequencies; (ii) the creation of a comprehensive acoustic image dataset with meticulous labelling and formatting; (iii) the implementation of sophisticated classification algorithms, namely support vector machine (SVM) and convolutional neural network (CNN), alongside cutting-edge detection algorithms based on transfer learning, including single-shot multibox detector (SSD) and You Only Look once (YOLO), specifically YOLOv8. The findings reveal discrimination between different classes of marine litter across the implemented algorithms for both detection and classification. Furthermore, cross-frequency studies were conducted to assess model generalisation, evaluating the performance of models trained on one acoustic frequency when tested with acoustic images based on different frequencies. This approach underscores the potential of multibeam data in the detection and classification of marine litter in the water column, paving the way for developing novel research methods in real-life environments.

2019

Low Cost Underwater Acoustic Positioning System with a Simplified DoA Algorithm

Autores
Guedes, P; Viana, N; Silva, J; Amaral, G; Ferreira, H; Dias, A; Almeida, JM; Martins, A; Silva, EP;

Publicação
OCEANS 2019 MTS/IEEE SEATTLE

Abstract
For the context of a mobile tracking system, an underwater acoustic positioning system was developed, using three hydrophones to compute the direction of an acoustic source relative to an Autonomous Surface Vehicle (ASV). The paper presents an algorithm for the Direction of Arrival (DoA) of an acoustic source, which allows to estimate its position. Preliminary results will be shown in this paper relative to the detection and identification (ID) of the acoustic sources, as well as an analysis of the proposed algorithm. The solution allows the position estimation of an acoustic source, which can be used in tracking solutions. The system can be applied in an ASV or fixed buoys, as long as the baseline's hydrophones are at equal angular distances. The main objective is to track targets with the DoA algorithm as well to estimate their position, improving what was done in [1].

2018

Underwater Acoustic Signal Detection and Identification Study for Acoustic Tracking Applications

Autores
Viana, N; Guedes, P; Machado, D; Pedrosa, D; Dias, A; Almeida, JM; Martins, A; Silva, E;

Publicação
OCEANS 2018 MTS/IEEE CHARLESTON

Abstract
In this work an acoustic tag detector was developed for the integration in a mobile robotic fish tracking architecture. The present paper presents both the developed system and preliminary results with particular emphasis of the developed solution with the tag manufacturer receiver. The work has been developed in the context of the MYTAG Portuguese RD project, addressing the study and characterisation of the European flounder migrations in the northern estuarine environments of Portugal. The detector is to be integrated in a tracking system using autonomous surface vehicles and fixed buoys. The main objective is to detect tags inserted surgically in flounders for the MYTAG project, while simultaneously identifying them. A detector solution is presented allowing for the detection and identification of V7 VEMCO tags and preliminary comparative results with the commercially available manufacturer receivers are also presented and discussed.