Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Pedro Félix
  • Cargo

    Assistente de Investigação
  • Desde

    01 abril 2022
004
Publicações

2024

Economic viability analysis of a Renewable Energy System for Green Hydrogen and Ammonia Production

Autores
Félix, P; Oliveira, F; Soares, FJ;

Publicação
2024 20TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM 2024

Abstract
This paper presents a methodology for assessing the long-term economic feasibility of renewable energy-based systems for green hydrogen and ammonia production. A key innovation of this approach is the incorporation of a predictive algorithm that optimizes day-ahead system operation on an hourly basis, aiming to maximize profit. By integrating this feature, the methodology accounts for forecasting errors, leading to a more realistic economic evaluation. The selected case study integrates wind and PV as renewable energy sources, supplying an electrolyser and a Haber-Bosch ammonia production plant. Additionally, all supporting equipment, including an air separation unit for nitrogen production, compressors, and hydrogen / nitrogen / ammonia storage devices, is also considered. Furthermore, an electrochemical battery is included, allowing for an increased electrolyser load factor and smoother operating regimes. The results demonstrate the effectiveness of the proposed methodology, providing valuable insights and performance indicators for this type of energy systems, enabling informed decision-making by investors and stakeholders.

2023

Battery Energy Storage System Optimal Sizing in a Battery Electric Vehicle Fast Charging Infrastructure

Autores
Félix, P; Roque, AC; Miranda, I; Gomes, A;

Publicação
U.Porto Journal of Engineering

Abstract
The growing number of battery electric vehicles (BEV) and plug-in hybrid electric vehicles (PHEV) brings the need of more fast charging stations across cities and highway stops. This charging stations toned to be connected to the electrical grid via existent facilities, causing constraints such as power availability. This study brings an approach for the planning and operation of such energy hubs by coping with this challenge by deploying a Battery-based Energy Storage System (BESS). With the BESS integration, it is expected to minimize utilization and overall energy costs, preventing infrastructure upgrades, and enhancing the integration of renewable energy resources. This approach sizes a stationary energy storage system with lithium-ion technology batteries through a co-optimization of the planning and operation stages, integrated in an electrical installation that will implement fast charging stations. This sizing is a result of an optimization based on the interior point algorithm, where the objective is to minimize the costs of maintenance, operation, and installation of a BESS, while properly modelling the different resources such as the BESS, the charging station and EV charging and PV generation. © 2023, Universidade do Porto - Faculdade de Engenharia. All rights reserved.