Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

Tânia Esteves é atualmente investigadora no INESC TEC. Obteve o seu doutoramento em 2024 no âmbito do Programa Doutoral em Informática (PDINF) da Universidade do Minho com a tese intitulada "Flexible Tracing and Analysis of Applications' I/O Behavior".


A sua investigação centra-se principalmente no diagnóstico de E/S, com ênfase no desenho de novas ferramentas de observabilidade e benchmarking para avaliar o desempenho, correcção, segurança e resiliência de aplicações centradas em dados e sistemas distribuídos. Para mais informações, consulte a sua página pessoal em https://taniaesteves.github.io/.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Tânia Conceição Araújo
  • Cargo

    Investigador Auxiliar
  • Desde

    01 abril 2018
002
Publicações

2024

When Amnesia Strikes: Understanding and Reproducing Data Loss Bugs with Fault Injection

Autores
Ramos, M; Azevedo, J; Kingsbury, K; Pereira, J; Esteves, T; Macedo, R; Paulo, J;

Publicação
Proc. VLDB Endow.

Abstract
We present LazyFS, a new fault injection tool that simplifies the debugging and reproduction of complex data durability bugs experienced by databases, key-value stores, and other data-centric systems in crashes. Our tool simulates persistence properties of POSIX file systems (e.g., operations ordering and atomicity) and enables users to inject lost and torn write faults with a precise and controlled approach. Further, it provides profiling information about the system’s operations flow and persisted data, enabling users to better understand the root cause of errors. Weuse LazyFS to study seven important systems: PostgreSQL, etcd, Zookeeper, Redis, LevelDB, PebblesDB, and Lightning Network. Our fault injection campaign shows that LazyFS automates and facilitates the reproduction of five known bug reports containing manual and complex reproducibility steps. Further, it aids in understanding and reproducing seven ambiguous bugs reported by users. Finally, LazyFS is used to find eight new bugs, which lead to data loss, corruption, and unavailability.

2023

Diagnosing applications' I/O behavior through system call observability

Autores
Esteves, T; Macedo, R; Oliveira, R; Paulo, J;

Publicação
2023 53RD ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS WORKSHOPS, DSN-W

Abstract
We present DIO, a generic tool for observing inefficient and erroneous I/O interactions between applications and in-kernel storage systems that lead to performance, dependability, and correctness issues. DIO facilitates the analysis and enables near real-time visualization of complex I/O patterns for data-intensive applications generating millions of storage requests. This is achieved by non-intrusively intercepting system calls, enriching collected data with relevant context, and providing timely analysis and visualization for traced events. We demonstrate its usefulness by analyzing two production-level applications. Results show that DIO enables diagnosing resource contention in multi-threaded I/O that leads to high tail latency and erroneous file accesses that cause data loss.

2023

Toward a Practical and Timely Diagnosis of Application's I/O Behavior

Autores
Esteves, T; Macedo, R; Oliveira, R; Paulo, J;

Publicação
IEEE ACCESS

Abstract
We present DIO, a generic tool for observing inefficient and erroneous I/O interactions between applications and in-kernel storage backends that lead to performance, dependability, and correctness issues. DIO eases the analysis and enables near real-time visualization of complex I/O patterns for data-intensive applications generating millions of storage requests. This is achieved by non-intrusively intercepting system calls, enriching collected data with relevant context, and providing timely analysis and visualization for traced events. We demonstrate its usefulness by analyzing four production-level applications. Results show that DIO enables diagnosing inefficient I/O patterns that lead to poor application performance, unexpected and redundant I/O calls caused by high-level libraries, resource contention in multithreaded I/O that leads to high tail latency, and erroneous file accesses that cause data loss. Moreover, through a detailed evaluation, we show that, when comparing DIO's inline diagnosis pipeline with a similar state-of-the-art solution, our system captures up to 28x more events while keeping tracing performance overhead between 14% and 51%.

2023

CRIBA: A Tool for Comprehensive Analysis of Cryptographic Ransomware's I/O Behavior

Autores
Esteves, T; Pereira, B; Oliveira, RP; Marco, J; Paulo, J;

Publicação
2023 42ND INTERNATIONAL SYMPOSIUM ON RELIABLE DISTRIBUTED SYSTEMS, SRDS 2023

Abstract
Cryptographic ransomware attacks are constantly evolving by obfuscating their distinctive features (e.g., I/O patterns) to bypass detection mechanisms and to run unnoticed at infected servers. Thus, efficiently exploring the I/O behavior of ransomware families is crucial so that security analysts and engineers can better understand these and, with such knowledge, enhance existing detection methods. In this paper, we propose CRIBA, an open-source framework that simplifies the exploration, analysis, and comparison of I/O patterns for Linux cryptographic ransomware. Our solution combines the collection of comprehensive information about system calls issued by ransomware samples, with a customizable and automated analysis and visualization pipeline, including tailored correlation algorithms and visualizations. Our study, including 5 Linux ransomware families, shows that CRIBA provides comprehensive insights about the I/O patterns of these attacks while aiding in exploring common and differentiating traits across families.

2021

S2Dedup: SGX-enabled secure deduplication

Autores
Miranda, M; Esteves, T; Portela, B; Paulo, J;

Publicação
SYSTOR '21: The 14th ACM International Systems and Storage Conference, Haifa, Israel, June 14-16, 2021.

Abstract
Secure deduplication allows removing duplicate content at third-party storage services while preserving the privacy of users' data. However, current solutions are built with strict designs that cannot be adapted to storage service and applications with different security and performance requirements. We present S2Dedup, a trusted hardware-based privacy-preserving deduplication system designed to support multiple security schemes that enable different levels of performance, security guarantees and space savings. An in-depth evaluation shows these trade-offs for the distinct Intel SGX-based secure schemes supported by our prototype. Moreover, we propose a novel Epoch and Exact Frequency scheme that prevents frequency analysis leakage attacks present in current deterministic approaches for secure deduplication while maintaining similar performance and space savings to state-of-the-art approaches.