Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    Tiago André Soares
  • Cargo

    Investigador Sénior
  • Desde

    01 setembro 2015
  • Nacionalidade

    Portugal
  • Centro

    Sistemas de Energia
  • Contactos

    +351 22 209 4230
    tiago.a.soares@inesctec.pt
017
Publicações

2025

Life cycle assessment comparison of electric and internal combustion vehicles: A review on the main challenges and opportunities

Autores
da Costa, VBF; Bitencourt, L; Dias, BH; Soares, T; Andrade, JVBD; Bonatto, BD;

Publicação
RENEWABLE & SUSTAINABLE ENERGY REVIEWS

Abstract
A notable shift from an internal combustion engine vehicles (ICEVs) fleet to an electric vehicles (EVs) fleet is expected in the medium term due to increasing environmental concerns and technological breakthroughs. In this context, this paper conducts a systematic literature review on life cycle assessment (LCA) research of EVs compared to ICEVs based on highly impactful articles. Several essential aspects and characteristics were identified and discussed, such as the assumed EV types, scales, models, storage technologies, boundaries, lifetime, electricity consumption, driving cycles, combustion fuels, locations, impact assessment methods, and functional units. Furthermore, LCA results in seven environmental impact categories were gathered and evaluated in detail. The research indicates that, on average, battery electric vehicles are superior to ICEVs in terms of greenhouse gas (GHG) emissions (182.9 g CO2-eq/km versus 258.5 g CO2-eq/km), cumulative energy demand (3.2 MJ/km versus 4.1 MJ/km), fossil depletion (49.7 g oil-eq/km versus 84.4 g oil-eq/km), and photochemical oxidant formation (0.47 g NMVOC-eq/km versus 0.61 g NMVOC-eq/km) but are worse than ICEVs in terms of human toxicity (198.1 g 1,4-DCB-eq/km versus 64.8 g 1,4-DCB-eq/km), particulate matter formation (0.32 g PM10-eq/km versus 0.26 g PM10-eq/km), and metal depletion (69.3 g Fe-eq/km versus 19.0 g Fe-eq/km). Emerging technological developments are expected to tip the balance in favor of EVs further. Based on the conducted research, we propose to organize the factors that influence the vehicle life cycle into four groups: user specifications, vehicle specifications, local specifications, and multigroup specifications. Then, a set of improvement opportunities is provided for each of these groups. Therefore, the present paper can contribute to future research and be valuable for decision-makers, such as policymakers.

2025

Generative Adversarial Networks for Synthetic Meteorological Data Generation

Autores
Viana, D; Teixeira, R; Soares, T; Baptista, J; Pinto, T;

Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2024, PT II

Abstract
This study explores models for synthetic data generation of time series. In order to improve the achieved results, i.e., the data generated, new ways of improvement are explored and different models of synthetic data generation are compared. The model addressed in this work is the Generative Adversarial Networks (GANs), known for generating data similar to the original basis data through the training of a generator. The GANs are applied using the datasets of Quinta de Santa Barbara and the Pinhao region, with the main variables being the Average temperature, Wind direction, Average wind speed, Maximum instantaneous wind speed and Solar radiation. The model allowed to generate missing data in a given period and, in turn, enables to analyze the results and compare them with those of a multiple linear regression method, being able to evaluate the effectiveness of the generated data. In this way, through the study and analysis of the GANs we can see if the model presents effectiveness and accuracy in the synthetic generation of meteorological data. With the proper conclusions of the results, this information can be used in order to improve the search for different models and the ability to generate synthetic time series data, which is representative of the real, original, data.

2025

Improving community-based electricity markets regulation: A holistic multi-objective optimization framework

Autores
Costa, VBF; Soares, T; Bitencourt, L; Dias, BH; Deccache, E; Silva, BMA; Bonatto, B; , WF; Faria, AS;

Publicação
RENEWABLE & SUSTAINABLE ENERGY REVIEWS

Abstract
Community-based electricity markets, which are defined as groups of members that share common interests in renewable distributed generation, allow prosumers to embrace more active roles by opening up several opportunities for trading electricity. At the same time, such markets may favor conventional consumers by allowing them to choose cheaper electricity providers. Due to trends in power sector modernization, community-based electricity markets are of great research interest, and there are already some associated models. However, there is a research gap in searching for integrated and holistic approaches that go beyond economic aspects, consider social and environmental aspects, and assume the balanced co-existence of community-based and conventional markets. This work fills this critical research gap by adapting/applying the optimized tariff model, Bass diffusion model, life cycle assessment, and multi-objective optimization to the context of community-based markets. Results indicate that favoring conventional markets in the short term and community-based markets in the medium term is beneficial. Moreover, regulated tariffs should increase slightly in the short/medium-term to accommodate DG growth. Additionally, community-based markets can decrease electricity expenses by around 13.6 % considering the market participants. Thus, such markets can be significantly beneficial in mitigating energy poverty.

2025

Integrating Cross-Sector Flexible Assets in Flexibility Bidding Curves for Energy Communities

Autores
Rodrigues L.; Mello J.; Silva R.; Faria S.; Cruz F.; Paulos J.; Soares T.; Villar J.;

Publicação
International Conference on the European Energy Market Eem

Abstract
Distributed energy resources (DERs) offer untapped potential to meet the flexibility needs of power systems with a high share of non-dispatchable renewable generation, and local flexibility markets (LFMs) can be effective mechanisms for procuring it. In LFMs, energy communities (ECs) can aggregate and offer flexibility from their members' DERs to other parties. However, since flexibility prices are only known after markets clear, flexibility bidding curves can be used to deal with this price uncertainty. Building on previous work by the authors, this paper employs a two-stage methodology to calculate flexibility bids for an EC participating in an LFM, including not only batteries and photovoltaic panels, but also cross-sector (CS) flexible assets like thermal loads and electric vehicles (EVs) to assess their impact. In Stage 1, the EC manager minimizes the energy bill without flexibility to define its baseline. In Stage 2, it computes the optimal flexibility to be offered for each flexibility price to build the flexibility bidding curve. Case examples allow to assess the impact of CS flexible assets on the final flexibility offered.

2025

Planning Energy Communities with Flexibility Provision and Energy and Cross-Sector Flexible Assets

Autores
Rodrigues L.; Silva R.; Macedo P.; Faria S.; Cruz F.; Paulos J.; Mello J.; Soares T.; Villar J.;

Publicação
International Conference on the European Energy Market Eem

Abstract
Planning Energy communities (ECs) requires engaging members, designing business models and governance rules, and sizing distributed energy resources (DERs) for a costeffective investment. Meanwhile, the growing share of nondispatchable renewable generation demands more flexible energy systems. Local flexibility markets (LFMs) are emerging as effective mechanisms to procure this flexibility, granting ECs a new revenue stream. Since sizing with flexibility becomes a highly complex problem, we propose a 2 -stage methodology for estimating DERs size in an EC with collective self-consumption, flexibility provision and cross-sector (CS) assets such as thermal loads and electric vehicles (EVs). The first stage computes the optimal DER capacities to be installed for each member without flexibility provision. The second stage departs from the first stage capacities to assess how to modify the initial capacities to profit from providing flexibility. The impact of data clustering and flexibility provision are assessed through a case study.

Teses
supervisionadas

2023

A Techno-Economic Feasibility Analysis of a Hydrogen Power Plant in a a Market Environment

Autor
Luís Manuel Dias Rodrigues

Instituição
IPP-ISEP

2023

A Bid Strategy Evaluation in the day-ahead market considering future opportunity costs

Autor
Pedro Bernardo Pereira dos Santos

Instituição
IPP-ISEP

2023

Design of new energy policies and actions for the empowerment of consumers through energy communities

Autor
Sara Isabel Martins Capelo

Instituição
IPP-ISEP

2022

Reactive Power Management considering Transmission System Operator abd Distribution System Operator Coordination

Autor
Marta Alexandra Lourenço Brandão Rodrigues

Instituição
IPP-ISEP

2022

P2P Flexibility Markets to Support the Coordination between the Transmission System Operator and Distribution System Operator

Autor
João de Sá Marques

Instituição
IPP-ISEP