Detalhes
Nome
Tiago Filipe GonçalvesCargo
Assistente de InvestigaçãoDesde
10 fevereiro 2019
Nacionalidade
PortugalCentro
Centro de Telecomunicações e MultimédiaContactos
+351222094000
tiago.f.goncalves@inesctec.pt
2023
Autores
Cruz, R; Silva, DTE; Goncalves, T; Carneiro, D; Cardoso, JS;
Publicação
SENSORS
Abstract
Semantic segmentation consists of classifying each pixel according to a set of classes. Conventional models spend as much effort classifying easy-to-segment pixels as they do classifying hard-to-segment pixels. This is inefficient, especially when deploying to situations with computational constraints. In this work, we propose a framework wherein the model first produces a rough segmentation of the image, and then patches of the image estimated as hard to segment are refined. The framework is evaluated in four datasets (autonomous driving and biomedical), across four state-of-the-art architectures. Our method accelerates inference time by four, with additional gains for training time, at the cost of some output quality.
2023
Autores
Castro, E; Ferreira, PM; Rebelo, A; Rio-Torto, I; Capozzi, L; Ferreira, MF; Goncalves, T; Albuquerque, T; Silva, W; Afonso, C; Sousa, RG; Cimarelli, C; Daoudi, N; Moreira, G; Yang, HY; Hrga, I; Ahmad, J; Keswani, M; Beco, S;
Publicação
MACHINE VISION AND APPLICATIONS
Abstract
Every year, the VISion Understanding and Machine intelligence (VISUM) summer school runs a competition where participants can learn and share knowledge about Computer Vision and Machine Learning in a vibrant environment. 2021 VISUM's focused on applying those methodologies in fashion. Recently, there has been an increase of interest within the scientific community in applying computer vision methodologies to the fashion domain. That is highly motivated by fashion being one of the world's largest industries presenting a rapid development in e-commerce mainly since the COVID-19 pandemic. Computer Vision for Fashion enables a wide range of innovations, from personalized recommendations to outfit matching. The competition enabled students to apply the knowledge acquired in the summer school to a real-world problem. The ambition was to foster research and development in fashion outfit complementary product retrieval by leveraging vast visual and textual data with domain knowledge. For this, a new fashion outfit dataset (acquired and curated by FARFETCH) for research and benchmark purposes is introduced. Additionally, a competitive baseline with an original negative sampling process for triplet mining was implemented and served as a starting point for participants. The top 3 performing methods are described in this paper since they constitute the reference state-of-the-art for this particular problem. To our knowledge, this is the first challenge in fashion outfit complementary product retrieval. Moreover, this joint project between academia and industry brings several relevant contributions to disseminating science and technology, promoting economic and social development, and helping to connect early-career researchers to real-world industry challenges.
2023
Autores
Silva, DTE; Cruz, R; Goncalves, T; Carneiro, D;
Publicação
FIFTEENTH INTERNATIONAL CONFERENCE ON MACHINE VISION, ICMV 2022
Abstract
Semantic segmentation consists of classifying each pixel according to a set of classes. This process is particularly slow for high-resolution images, which are present in many applications, ranging from biomedicine to the automotive industry. In this work, we propose an algorithm targeted to segment high-resolution images based on two stages. During stage 1, a lower-resolution interpolation of the image is the input of a first neural network, whose low-resolution output is resized to the original resolution. Then, in stage 2, the probabilities resulting from stage 1 are divided into contiguous patches, with less confident ones being collected and refined by a second neural network. The main novelty of this algorithm is the aggregation of the low-resolution result from stage 1 with the high-resolution patches from stage 2. We propose the U-Net architecture segmentation, evaluated in six databases. Our method shows similar results to the baseline regarding the Dice coefficient, with fewer arithmetic operations.
2023
Autores
Serrano e Silva, P; Cruz, R; Shihavuddin, ASM; Gonçalves, T;
Publicação
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
2022
Autores
Goncalves, T; Rio-Torto, I; Teixeira, LF; Cardoso, JS;
Publicação
IEEE ACCESS
Abstract
The increasing popularity of attention mechanisms in deep learning algorithms for computer vision and natural language processing made these models attractive to other research domains. In healthcare, there is a strong need for tools that may improve the routines of the clinicians and the patients. Naturally, the use of attention-based algorithms for medical applications occurred smoothly. However, being healthcare a domain that depends on high-stake decisions, the scientific community must ponder if these high-performing algorithms fit the needs of medical applications. With this motto, this paper extensively reviews the use of attention mechanisms in machine learning methods (including Transformers) for several medical applications based on the types of tasks that may integrate several works pipelines of the medical domain. This work distinguishes itself from its predecessors by proposing a critical analysis of the claims and potentialities of attention mechanisms presented in the literature through an experimental case study on medical image classification with three different use cases. These experiments focus on the integrating process of attention mechanisms into established deep learning architectures, the analysis of their predictive power, and a visual assessment of their saliency maps generated by post-hoc explanation methods. This paper concludes with a critical analysis of the claims and potentialities presented in the literature about attention mechanisms and proposes future research lines in medical applications that may benefit from these frameworks.
Teses supervisionadas
2022
Autor
Pedro João Cruz Serrano e Silva
Instituição
UP-FEUP
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.