Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CAP

2019

Fabrication of periodic structures in optical fibers by femtosecond laser micromachining for sensing applications

Autores
Viveiros, D; Maia, JM; Amorim, VA; Jorge, PAS; Marques, PVS;

Publicação
FOURTH INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
A femtosecond laser direct writing system was developed to explore the fabrication of periodic structures in optical fibers. The possibility to write type I first- and second-order Bragg gratings in the same single-mode fiber (SMF-28e), with reflectivities of 99.6 % and 59.3 %, respectively, is presented. The fabrication of structures (waveguides and grating) in a coreless and in a SMF-28e fiber was first demonstrated, and the gratings were then exposed to a thermal annealing up to 1000 degrees C. The FBG inscribed in the SMF-28e fiber presents thermal stability at temperatures of 800 degrees C and a temperature sensitivity of 14.34 pm/degrees C was determined.

2019

Plasma control by pattern recognition in laser induced breakdown spectroscopy

Autores
Ferreira, MFS; Guimaraes, D; Jorge, PAS; Martins, RC;

Publicação
FOURTH INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
A low-computational intensive laser control approach is proposed for implementing an embedded control system, using pattern recognition by relevant principal component analysis for laser induced breakdown spectroscopy applications. The laser energy is directly related to the resulting spectral pattern and is determined by iterations in the feature space. Results show that single shot iterations until optimum energy can be significantly reduced by pattern recognition. A performance benchmark with minerals, alloys and pellets from material collected from a drill demonstrated an average of 50% improvement, significantly reducing sample deterioration and improving measurement safety.

2019

Colorimetric Fiber Optic Based Probe for Real-Time Monitoring of Dissolved CO2 in Aquaculture Systems

Autores
Mendes, J; Coelho, L; Rocha, A; Pereira, C; Kovacs, B; Jorge, P; Borges, MT;

Publicação
Proceedings

Abstract
Dissolved carbon dioxide (dCO2) evaluation is very important in many different fields. In this work, a new, integrated, colorimetric-optical fiber-based system for dCO2 monitoring in aquaculture industry was developed. The sensing chemistry is based on colorimetric changes of the used indicator—poly p-nitrophenol (pNPh)—in contact with CO2. Preliminary tests were done in a laboratory environment (calibration) and in a laboratory Recirculating Aquaculture System (RAS) with controlled CO2 injection. The results have shown the suitability of the new sensor for assessing dCO2 dynamics in RAS and its fast detection of low dCO2 concentrations in an appropriate operation range.

2019

Optimization of interrogation methods for sensors based on optical microbubble resonators

Autores
dos Santos, PSS; Coelho, L; Jorge, PAS;

Publicação
FOURTH INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS

Abstract
Optical microbubble resonators are among the highest sensitivity optical sensors. In the context of its application in the detection of water micro contaminants, in portable systems, their interrogation must be made by tracking the resonant wavelength peak position with the highest accuracy possible, at a reasonable cost. In this work different laser sources and scanning methods were tested and compared, aiming the development of a portable prototype. Each tunable laser source, was evaluated using a C2H2 Gas cell, which provided an absolute wavelength reference. Light transmitted through the cell was recorded using a photodetector and a software controlled feedback loop, enabling locking into selected reference peaks. Three distinct scanning methods were tested and compared for each laser source: large and short-range laser scanning and external waveform dithering, from which minimum standard deviations of 20, 0.18, and 0.07 pm, were obtained, respectively.

2019

High sensitivity strain sensor based on twin hollow microspheres

Autores
Monteiro, CS; Kobelke, J; Schuster, K; Bierlich, J; Silva, SO; Frazao, O;

Publicação
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS

Abstract
A sensor based on 2 hollow core microspheres is proposed. Each microsphere was produced separately through fusion splicing and then joined. The resultant structure is a Fabry-Perot interferometer with multiple interferences that can be approximated to a 4-wave interferometer. Strain characterization was attained for a maximum of 1350 mu epsilon, achieving a linear response with a sensitivity of 3.39 +/- 0.04 pm/mu epsilon. The fabrication technique, fast and with no chemical hazards, as opposed to other fabrication techniques, makes the proposed sensor a compelling solution for strain measurements in hash environments.

2019

Multimode Fabry-Perot Interferometer Probe Based on Vernier Effect for Enhanced Temperature Sensing

Autores
Gomes, AD; Becker, M; Dellith, J; Zibaii, MI; Latifi, H; Rothhardt, M; Bartelt, H; Frazao, O;

Publicação
SENSORS

Abstract
New miniaturized sensors for biological and medical applications must be adapted to the measuring environments and they should provide a high measurement resolution to sense small changes. The Vernier effect is an effective way of magnifying the sensitivity of a device, allowing for higher resolution sensing. We applied this concept to the development of a small-size optical fiber Fabry-Perot interferometer probe that presents more than 60-fold higher sensitivity to temperature than the normal Fabry-Perot interferometer without the Vernier effect. This enables the sensor to reach higher temperature resolutions. The silica Fabry-Perot interferometer is created by focused ion beam milling of the end of a tapered multimode fiber. Multiple Fabry-Perot interferometers with shifted frequencies are generated in the cavity due to the presence of multiple modes. The reflection spectrum shows two main components in the Fast Fourier transform that give rise to the Vernier effect. The superposition of these components presents an enhancement of sensitivity to temperature. The same effect is also obtained by monitoring the reflection spectrum node without any filtering. A temperature sensitivity of -654 pm/degrees C was obtained between 30 degrees C and 120 degrees C, with an experimental resolution of 0.14 degrees C. Stability measurements are also reported.

  • 41
  • 233