Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CAP

2019

Femtosecond Laser Micromachining of Fabry-Pérot Interferometers for Magnetic Field Sensing

Autores
Maia, JM; Amorim, VA; Viveiros, D; Marques, PVS;

Publicação
EPJ Web of Conferences

Abstract
Fs-laser micromachining is a high precision fabrication technique that can be used to write novel three-dimensional structures, depending on the nature of light-matter interaction. In fused silica, the material modification can lead to (i) an increase of the refractive index around the focal volume, resulting in the formation of optical circuits, or (ii) an enhancement of the etch rate of the laser-affected zones relative to the pristine material, leading to a selective and anisotropic etching reaction that enables fabrication of microfluidic systems. Here, both effects are combined to fabricate a Fabry-Pérot interferometer, where optical waveguides and microfluidic channels are integrated monolithically in a fused silica chip. By filling the channel with a magnetic fluid whose refractive index changes with an external magnetic field, the device can be used as a magnetic field sensor. A linear sensitivity of -0.12 nm/mT is obtained in the 5.0±0.5 to 33.0±0.5 mT range, with the field being applied parallel to the light propagation direction.

2019

Catalytic Cyclization of Propargyl Bromoethers via Electrogenerated Nickel(I) Tetramethylcyclam in Ionic Liquids: Water Effects

Autores
Mendes, JP; Dunach, E; Esperanca, JMSS; Medeiros, MJ; Ribeiro, JF; Silva, MM; Olivero, S;

Publicação
JOURNAL OF THE ELECTROCHEMICAL SOCIETY

Abstract
Cyclic voltammetry and controlled-potential electrolysis have been employed to investigate the reductive intramolecular cyclization of propargyl bromoethers derivatives, catalyzed by electrogenerated (1,4,8,11-tetramethyl-1,4,8,11-tetraaza-cyclotetradecane) nickel(I), [Ni(tmc)](+), as the catalyst, in N,N,N-trimethyl-N-(2-hydroxyethyl) ammonium bis(trifluoromethylsulfonyl) imide, [N-1 1 1 2(OH)][NTf2] and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide, [C(2)mim][NTf2] in the absence and in the presence of water. The results show that the reaction leads to the formation of the expected heterocyclic compounds, in moderate to good yields. These compounds are important intermediates in the synthesis of natural products with possible biological activities. (C) 2019 The Electrochemical Society.

2019

A study of lead uptake and distribution in horns from lead-dosed goats using synchrotron radiation-induced micro X-ray fluorescence elemental imaging

Autores
Tehrani, MW; Huang, R; Guimaraes, D; Smieska, L; Woll, A; Parsons, PJ;

Publicação
JOURNAL OF TRACE ELEMENTS IN MEDICINE AND BIOLOGY

Abstract
Objective: The principal goal of this study was to investigate the uptake and distribution of lead (Pb) in the horns of Pb-dosed goats, and to explore possible links to their historical Pb dosing records. Horn is a keratinized material that grows in discrete increments with the potential to preserve the historical record of past environmental exposures. While previous studies have leveraged this potential to examine environmental and biological phenomena in horns, Pb uptake has never been explored. Methods: Horns were collected post-mortem from three goats that had been previously used to produce blood lead reference materials for the New York State proficiency testing program. The animals were periodically dosed with lead acetate, administered orally in a capsule, over a 5 to 8-year period. Horn cross sections were taken from each animal and analyzed using synchrotron radiation-induced micro X-ray fluorescence spectrometry (SR-ARE) at the Cornell High Energy Synchrotron Source (CHESS). Results: Elemental distribution maps were obtained by SR-mu XRF for Pb, Ca, S, Se, and three other elements (Br, Zn and Cu), with values reported quantitatively as a mass fraction (mu g/g for trace elements and mg/g for Ca and S). Accumulations of Pb were clearly visible as a series of narrow "rings" in each of the horn samples analyzed. The elements Ca, S, Br, Zn, and Cu were also detected as discrete rings within each cross-section, with Br strongly correlated with S in the samples examined. A marginal increase in Se may coincide with Pb accumulation in horn cross-sections. Annual mineralization estimates based on the relative distribution of Ca and S were used to establish a tentative timeline for horn growth, with each timeline linked to the pattern of Pb accumulation in the corresponding horn cross-section sample. Conclusions: Following ingestion, absorbed Pb is eventually deposited into caprine horns, resulting in discrete accumulations or "rings." Elemental mapping by SR-mu XRF clearly show Ca-rich layers that vary with annual periodicity, consistent with previous reports of horn mineralization. Localized enrichment of Cu, Zn, Br and S appear to coincide with the keratinized regions related to the annual growth ring pattern in horns. Spatial analysis of horns for Pb accumulation may be useful as a qualitative marker of time-resolved exposures that may reflect specific periods of acute Pb absorption.

2019

Humidity sensor based on optical fiber coated with agarose gel

Autores
Novais, S; Ferreira, MS; Pinto, JL;

Publicação
OPTICAL SENSORS 2019

Abstract
A reflective fiber optic sensor based on multimode interference for the measurement of relative humidity (RH) is proposed and experimentally demonstrated. The proposed probe is fabricated by fusion-splicing, approximately 30 mm long coreless fiber section to a single mode fiber. A hydrophilic agarose gel is coated on the coreless fiber, using the dip coating technique. When the incident light comes from the SMF to the CSF, the high-order modes are excited and propagate within the CSF. These excited modes interfere with one another as they propagate along whole CSF length, giving rise to a multimode interference (MMI). Since the effective refractive index of the agarose gel changes with the ambient relative humidity, as the environmental refractive index changes, the propagation constants for each guided mode within the CSF will change too, which leads to shifts in the output spectra. The proposed sensor has a great potential in real time RH monitoring, exhibiting a large range of operation with good stability. For RH variations in the range between 60 %RH and 98.5 %RH, the sensor presents a maximum sensitivity of 44.2 pm/%RH, and taking in consideration the interrogation system, a resolution of 1.1%RH is acquired. This sensor can be of interest for applications where a control of high levels of relative humidity is required.

2019

Internal strain and temperature discrimination with optical fiber hybrid sensors in Li-ion batteries

Autores
Nascimento, M; Novais, S; Ding, MS; Ferreira, MS; Koch, S; Passerini, S; Pinto, JL;

Publicação
JOURNAL OF POWER SOURCES

Abstract
Strain and temperature are critical parameters to monitor in Li-ion batteries (LIBs) to improve their safety and long-term cycling stability. High local current densities can result in a massive heat release, decomposition of the electrolyte, gas evolution and even explosion of the battery cell, known as thermal runaway. However, the corrosive chemical environment in the batteries is a challenge to monitor strain and temperature. Optical fiber sensors, due to their high chemical stability and small diameter, can be embedded within the LIBs, thus becoming an interesting solution for operando and in situ measurements. In this work, a hybrid sensing network constituted by fiber Bragg gratings and Fabry-Perot cavities is proposed for the discrimination of strain and temperature. The proof-of-concept was performed by attaching the sensing network to the surface of a smart phone battery. Afterwards, it was embedded in a Li-ion pouch cell to monitor and simultaneously discriminate internal strain and temperature variations in three different locations. Higher thermal and strain variations are observed in the middle position. The methodology presented proves to be a feasible and non-invasive solution for internal, real-time, multipoint and operando temperature and strain monitoring of LIBs, which is crucial for their safety.

2018

Temperature Compensated Strain Sensor Based on Long-Period Gratings and Microspheres

Autores
Ascorbe, J; Coelho, L; Santos, JL; Frazao, O; Corres, JM;

Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
In this letter, we present a new structure composed by a long-period grating (LPG) and a microsphere in series, which works as a modal interferometer besides allowing the mode coupled to the cladding to be coupled back to the core. The LPG was written by the electric arc technique and the microsphere was fabricated using a splicing machine. It is possible to use this new structure for simultaneous measurement of strain and temperature. It also allows one to obtain a temperature compensated strain sensor by using a proper data processing algorithm, which utilizes two distinct wavelengths for strain and temperature. Then, a strain sensitivity of 0.86 pm/mu epsilon and a reduced temperature sensitivity of 0.7 pm/degrees C were achieved.

  • 43
  • 231