2018
Autores
Ascorbe, J; Coelho, L; Santos, JL; Frazao, O; Corres, JM;
Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS
Abstract
In this letter, we present a new structure composed by a long-period grating (LPG) and a microsphere in series, which works as a modal interferometer besides allowing the mode coupled to the cladding to be coupled back to the core. The LPG was written by the electric arc technique and the microsphere was fabricated using a splicing machine. It is possible to use this new structure for simultaneous measurement of strain and temperature. It also allows one to obtain a temperature compensated strain sensor by using a proper data processing algorithm, which utilizes two distinct wavelengths for strain and temperature. Then, a strain sensitivity of 0.86 pm/mu epsilon and a reduced temperature sensitivity of 0.7 pm/degrees C were achieved.
2018
Autores
Monteiro Silva, F; Santos, JL; Marques Martins de Almeida, JMMM; Coelho, L;
Publicação
IEEE SENSORS JOURNAL
Abstract
It is reported a new optical sensing system, based on long period fiber gratings (LPFGs) coated with cuprous oxide (Cu2O), for the quantification of ethanol concentration in ethanol-gasoline mixtures. The detection principle is based on the spectral features dependence of the Cu2O coated LPFGs on the refractive index of the surrounding medium. The chemical constitution of the ethanol-gasoline samples was obtained by gas chromatography mass spectrometry (GC) and GC thermal conductivity detection. Two different modes of operation are presented, wavelength shift and optical power shift mode of operation, with good linear relations between ethanol concentration and the corresponding spectral features of the LPFGs, R-2 = 0.999 and 0.996, respectively. In the range of ethanol concentration up to 30% v/v, the sensitivities were 0.76 +/- 0.01 nm/% v/v and 0.125 +/- 0.003 dB/% v/v with resolutions of 0.21% v/v and 0.73% v/v and limits of detection of 1.63% v/v and 2.10% v/v, for the for the same operation modes, respectively.
2018
Autores
Costa Coelho, LCC; Soares dos Santos, PSS; da Silva Jorge, PAD; Santos, JL; Marques Martins de Almeida, JMMM;
Publicação
JOURNAL OF LIGHTWAVE TECHNOLOGY
Abstract
Long period fiber gratings (LPFGs) were coated with iron (Fe) and exposed to oxidation in air and in water having different concentrations of sodium chloride (NaCl) to detect the formation of iron oxides and hydroxides. The process was monitored in real time by measuring the characteristics of the LPFGs attenuation bands. Thin films of Fe were deposited on top of silica (SiO2) substrates, annealed in air, and exposed to water with NaCl. The composition of the oxide and hydroxide layers was analyzed by SEM/EDS and X-ray diffraction. It observed the formation of oxide phases, Fe3O4 (magnetite), and Fe2O3 (hematite) when annealing in air, and Fe-2(OH)(3) Cl (hibbingite) and FeO(OH) (lepidocrocite) when exposed to water with NaCl. Results shows that Fe-coated LPFGs can be used as sensors for real-time monitoring of corrosion in offshore and in coastal projects where metal structures made of iron alloys are in contact with sea or brackish water. In addition, LPFGs coated with hematite were characterized for sensing, leading to the conclusion that the sensitivity to the refractive index of the surrounding medium can be tuned by proper choice of hematite thickness.
2018
Autores
Silva, GE; Caldas, P; Santos, JL; Santos, JC;
Publicação
Optics InfoBase Conference Papers
Abstract
This paper presents preliminary results of common water thermal conductivity measurements using an all-fiber sensor based in conventional hot-wire method concept. The thermal conductivity of common water at room temperature obtained is 0.699 W/mK. Although the result is relatively distinct, about 14%, from the reference value found in literature, it is promising and indicates the feasibility of using the experimental arrangement for measuring thermal properties of materials with higher accuracy, provided that improvements already foreseen in future work be incorporated. © OSA 2018 © 2018 The Author(s)
2018
Autores
Paiva, JS; Jorge, PAS; Rosa, CC; Cunha, JPS;
Publicação
BIOCHIMICA ET BIOPHYSICA ACTA-GENERAL SUBJECTS
Abstract
Background: The tip of an optical fiber has been considered an attractive platform in Biology. The simple cleaved end of an optical fiber can be machined, patterned and/or functionalized, acquiring unique properties enabling the exploitation of novel optical phenomena. Prompted by the constant need to measure and manipulate nanoparticles, the invention of the Scanning Near-field Optical Microscopy (SNOM) triggered the optimization and development of novel fiber tip microfabrication methods. In fact, the fiber tip was soon considered a key element in SNOM by confining light to sufficiently small extensions, challenging the diffraction limit. As result and in consequence of the newly proposed "Lab On Tip" concept, several geometries of fiber tips were applied in three main fields: imaging (in Microscopy/Spectroscopy), biosensors and micromanipulation (Optical Fiber Tweezers, OFTs). These are able to exert forces on microparticles, trap and manipulate them for relevant applications, as biomolecules mechanical study or protein aggregates unfolding. Scope of review: This review presents an overview of the main achievements, most impactful studies and limitations of fiber tip-based configurations within the above three fields, along the past 10 years. Major conclusions: OFTs could be in future a valuable tool for studying several cellular phenomena such as neurodegeneration caused by abnormal protein fibrils or manipulating organelles within cells. This could contribute to understand the mechanisms of some diseases or biophenomena, as the axonal growth in neurons.
2018
Autores
Santos, MM; Jorge, PAS; Coimbra, J; Vale, C; Caetano, M; Bastos, L; Iglesias, I; Guimaraes, L; Reis Henriques, MA; Teles, LO; Vieira, MN; Raimundo, J; Pinheiro, M; Nogueira, V; Pereira, R; Neuparth, T; Ribeiro, MC; Silva, E; Castro, LFC;
Publicação
SCIENCE OF THE TOTAL ENVIRONMENT
Abstract
The growing economic interest in the exploitation of mineral resources on deep-ocean beds, including those in the vicinity of sensitive-rich habitats such as hydrothermal vents, raise amounting concern about the damage that such actions might originate to these poorly-know ecosystems, which represent millions of years of evolution and adaptations to extreme environmental conditions. It has been suggested that mining may cause a major impact on vent ecosystems and other deep-sea areas. Yet, the scale and the nature of such impacts are unknown at present. Hence, building upon currently available scientific information it is crucial to develop new cost-effective technologies embedded into rigorous operating frameworks. The forward-thinking provided here will assist in the development of new technologies and tools to address the major challenges associated with deep sea-mining; technologies for in situ and ex situ observation and data acquisition, biogeochemical processes, hazard assessment of deep-sea mining to marine organisms and development of modeling tools in support of risk assessment scenarios. These technological developments are vital to validate a responsible and sustainable exploitation of the deep-sea mineral resources, based on the precautionary principle.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.