2018
Autores
Silveira, B; Gomes, A; Becker, M; Schneidewind, H; Frazao, O;
Publicação
PHOTONICS
Abstract
A silica resonator was demonstrated for random laser generation. The resonator consisted of a conventional microsphere fabricated in an optical fiber tip through electric arc discharge, and modifications to its geometry were carried out to create asymmetry inside the silica structure. The resulting Bunimovich stadium-like microsphere promotes multiple reflections with the boundaries, following the stochastic properties of dynamic billiards. The interference of the multiple scattered beams generates a random signal whose intensity was increased by sputter-coating the microstadium with a gold thin film. The random signal is amplified using an erbium-doped fiber amplifier (EDFA) in a ring cavity configuration with feedback, and lasing is identified as temporal and spectral random variations of the signal between consecutive measurements.
2018
Autores
Magalhaes, R; Silva, S; Frazao, O;
Publicação
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
Abstract
The placement of an Erbium-doped Fiber Amplifier and a Fabry-Perot cavity inside a fiber ring resonator can generate a sinusoidal modulation in the optical signal obtained. The characterization of this behavior is achieved by changing the length of the Fabry-Perot cavity, which acts as a sensing device. A theoretical model of the optical signal modulation obtained with such configuration is also presented.
2018
Autores
Gomes, AD; Silveira, B; Karami, F; Zibaii, MI; Latifi, H; Dellith, J; Becker, M; Rothhardt, M; Bartelt, H; Frazao, O;
Publicação
INTERFEROMETRY XIX
Abstract
Two multi-path interferometers were developed using cleaved silica microspheres. A microsphere on top of a singlemode fiber tip was cleaved with a focused ion beam. The asymmetry introduced in the structure generates a new set of optical paths due to random reflections inside the microsphere. The obtained reflection spectrum presents a random-like interferometric behavior with strong spectral modulation of around 3 dB amplitude. Two distinct regions can be observed when a fast Fourier transform is applied. The first involves two cavities at a lower frequency and the second region involves a band of frequencies that is originated by the random interferometric reflections. These two spectral characteristics can be separated using low-pass and high-pass filters, respectively. A correlation method was used to obtain a temperature response from the two-cavity component. A similar structure was also created in a microsphere of multimode fiber. The microsphere was cleaved by polishing the structure with a certain angle. The interference between the different optical paths can be seen as the superposition of several two-wave interferometers, which can be discriminated through signal processing. Temperature sensing was also explored with this structure. The sensitivity to temperature is more than 3-fold for smaller cavities. Moreover, a sensitivity enhancement is also verified if a correlation method is used.
2018
Autores
Silva, S; Frazao, O;
Publicação
IEEE Sensors Letters
Abstract
2018
Autores
Marques, PVS; Amorim, VA; Maia, JM; Alexandre, D; Viveiros, D;
Publicação
2018 20TH ANNIVERSARY INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS (ICTON)
Abstract
This paper will review the fabrication of monolithic integrated optical devices by laser direct writing with femtosecond pulsed laser sources, starting with the description of experimental procedures and optimal conditions to fabricate low loss optical waveguides, directional couplers, Y-junctions and first order Bragg gratings by point-by-point writing methods. Finally, the characterization results of a fully operational Add-Drop filter in pure fused silica substrate are described.
2018
Autores
Maciel, MJ; Rosa, CC; Wolffenbuttell, RF; Correia, JH;
Publicação
JOURNAL OF PHYSICS D-APPLIED PHYSICS
Abstract
Optical coherence tomography (OCT) systems have huge potential for applications beyond the traditional ophthalmology as a general-purpose medical instrument for optical biopsy. The widening of the range of applications is expected to significantly increase production volume and, consequently, puts pressure on unit cost. This trend calls for a flexible and miniaturized system fabricated in a batch process. In this paper, the different OCT configurations are compared for suitability in such an implementation. The required flexibility favors operation in the spectral domain, using a broadband light source in combination with a spectrometer, while the miniaturization and low unit-cost in batch fabrication can be achieved using silicon micro-system technologies. The feasibility of miniaturizing OCT components has already been demonstrated, amongst others a beam splitter using 45 degrees saw dicing of a glass substrate and appropriate thin-film coating the integration of the essential components into a single OCT microsystem remains a challenge. In this paper, the wafer-level fabrication of a Michelson interferometer for a miniaturized OCT system is presented, using an improved 45 degrees saw dicing process, which is suitable for wafer-level co-integration of also the other components of the OCT microsystem.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.