2016
Autores
Silva, S; Marques, MB; Frazao, O;
Publicação
SIXTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS
Abstract
This work demonstrates the viability of using a cavity ring-down technique (CRD) for remote sensing. A conventional CRD configuration is used where and optical circulator is added inside the fibre loop to couple 20 km of optical fibre with a gold mirror at its end with the purpose of remote sensing. As a proof-of-concept, an intensity sensor based on an eight-figure configuration is used at the end of the 20 km of fibre for displacement sensing. In this case, a commercial OTDR is used as modulated light source to send impulses down to the fibre ring.
2016
Autores
Andre, RM; Warren Smith, SC; Becker, M; Dellith, J; Rothhardt, M; Zibaii, MI; Latifi, H; Marques, MB; Bartelt, H; Frazao, O;
Publicação
SIXTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS
Abstract
Fiber probe structures composed of two physical microcavities were created using focused ion beam technology. These structures have a tip-like shape as they were milled in preciously etched tapered fiber tips. The microprobes are then characterized for temperature and refractive index sensing using a signal filtering technique to discriminate signals from distinct microcavities. Using fast Fourier transforms combined with band-pass filters, it is possible to reconstruct the spectra of each cavity independently and thus measure their individual spectral shifts.
2016
Autores
Magalhaes, R; Silva, SO; Frazao, O;
Publicação
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
Abstract
In this work, it is demonstrated a fiber ring resonator connected to an interrogation system usually implemented on a cavity ring-down technique. A long-period grating (LPG) was inserted in the resonant cavity, being operated as a curvature sensor. The experimental results demonstrate that using this setup, different sensitivities can be achieved in terms of analyzing decay time over the radius of the curvature and over curvature. The LPG sensor presented higher sensitivity with larger radius of curvature, namely 6.91 s/m. (c) 2016 Wiley Periodicals, Inc. Microwave Opt Technol Lett 58:267-270, 2016
2016
Autores
Gomes, AD; Frazao, O;
Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS
Abstract
A Mach-Zehnder sensor based on a large knot fiber resonator with a diameter of a few millimeters is designed using a single long taper. The long taper of some centimeters is fabricated with a CO2 laser technique. In air, light cannot couple between adjacent sections in the knot, and no signal is observed. However, in liquid, light is less confined and there is coupling between adjacent sections of the knot, resulting in a phase difference and consequent interference. The Mach-Zehnder is formed by the two contact points in the knot. The refractive index sensing of liquid compounds is achieved by monitoring the wavelength shift of the spectra. A sensitivity of 642 +/- 29 nm/refractive index unit (RIU) is achieved for refractive index sensing in the range of 1.3735-1.428 with a resolution of 0.009 RIU. For temperature sensing, a sensitivity of -42 +/- 9 pm/degrees C is observed. A low influence of temperature in the refractive index change is observed: 6.5 x 10(-5) RIU/degrees C.
2016
Autores
Silva, S; Marques, MB; Frazao, O;
Publicação
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS
Abstract
This work demonstrates the viability of using a cavity ring-down (CRD) technique for remote sensing. A conventional CRD configuration is used where an optical circulator is added inside the fiber loop to couple 19 km of optical fiber with a gold mirror at its end with the purpose of remote sensing. As a proof-of-concept, an intensity sensor based on an eight-figure configuration is used at the end of the 19 km of fiber for displacement sensing. (C) 2016 Wiley Periodicals, Inc.
2016
Autores
Monteiro, CS; Ferreira, MS; Kobelke, J; Schuster, K; Bierlich, J; Frazao, O;
Publicação
SIXTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS
Abstract
A curvature sensor based on a Fabry-Perot interferometer is proposed. A capillary tube of silica is fusion spliced between two single mode fibers, producing a Fabry-Perot cavity. The light propagates in air, when passing through the capillary tube. Two different cavities are subjected to curvature and temperature. The cavity with shorter length shows insensitivity to both measurands. The larger cavity shows two operating regions for curvature measurement, where a linear response is shown, with a maximum sensitivity of 18.77pm/m(-1) for the high curvature radius range. When subjected to temperature, the sensing head produces a similar response for different curvature radius, with a sensitivity of 0.87pm/degrees C.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.