Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por CAP

2016

CAVITY RING-DOWN TECHNIQUE FOR REMOTE SENSING

Autores
Silva, S; Marques, MB; Frazao, O;

Publicação
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS

Abstract
This work demonstrates the viability of using a cavity ring-down (CRD) technique for remote sensing. A conventional CRD configuration is used where an optical circulator is added inside the fiber loop to couple 19 km of optical fiber with a gold mirror at its end with the purpose of remote sensing. As a proof-of-concept, an intensity sensor based on an eight-figure configuration is used at the end of the 19 km of fiber for displacement sensing. (C) 2016 Wiley Periodicals, Inc.

2016

Curvature Sensor Based on a Fabry-Perot Interferometer

Autores
Monteiro, CS; Ferreira, MS; Kobelke, J; Schuster, K; Bierlich, J; Frazao, O;

Publicação
SIXTH EUROPEAN WORKSHOP ON OPTICAL FIBRE SENSORS

Abstract
A curvature sensor based on a Fabry-Perot interferometer is proposed. A capillary tube of silica is fusion spliced between two single mode fibers, producing a Fabry-Perot cavity. The light propagates in air, when passing through the capillary tube. Two different cavities are subjected to curvature and temperature. The cavity with shorter length shows insensitivity to both measurands. The larger cavity shows two operating regions for curvature measurement, where a linear response is shown, with a maximum sensitivity of 18.77pm/m(-1) for the high curvature radius range. When subjected to temperature, the sensing head produces a similar response for different curvature radius, with a sensitivity of 0.87pm/degrees C.

2016

Temperature-Independent Multi-Parameter Measurement Based on a Tapered Bragg Fiber

Autores
Martins, TJM; Marques, MB; Roy, P; Jamier, R; Fevrier, S; Frazao, O;

Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS

Abstract
Temperature-independent strain and angle measurements are achieved resorting to a taper fabricated on a Bragg fiber using a CO2 laser. The characteristic bimodal interference of an untapered Bragg fiber is rendered multimode after taper fabrication and the resulting transmission spectra are analyzed as a function of strain, applied angle, and temperature variations. The intrinsic strain sensitivity exhibited by the Bragg fiber is increased 15 fold after tapering and reaches 22.68 pm/mu epsilon. The angle and temperature measurements are also performed with maximum sensitivities of 185.10 pm/deg and -12.20 pm/K, respectively. The difference in wavelength shift promoted by variations in strain, angle, and temperature for the two fringes studied is examined. Strain and angle sensing with little temperature sensitivity is achieved, presenting a response of 2.87 pm/mu epsilon and -57.31 pm/deg, respectively, for strain values up to 400 mu epsilon and angles up to 10 degrees. Simultaneous angle and strain measurements are demonstrated.

2016

Fiber Fabry-Perot Interferometer for Curvature Sensing

Autores
Monteiro, CS; Ferreira, MS; Silva, SO; Kobelke, J; Schuster, K; Bierlich, J; Frazao, O;

Publicação
PHOTONIC SENSORS

Abstract
A curvature sensor based on an Fabry-Perot (FP) interferometer was proposed. A capillary silica tube was fusion spliced between two single mode fibers, producing an FP cavity. Two FP sensors with different cavity lengths were developed and subjected to curvature and temperature. The FP sensor with longer cavity showed three distinct operating regions for the curvature measurement. Namely, a linear response was shown for an intermediate curvature radius range, presenting a maximum sensitivity of 68.52 pm/m(-1). When subjected to temperature, the sensing head produced a similar response for different curvature radii, with a sensitivity varying from 0.84 pm/degrees C to 0.89 pm/degrees C, which resulted in a small cross-sensitivity to temperature when the FP sensor was subjected to curvature. The FP cavity with shorter length presented low sensitivity to curvature.

2016

Strain and curvature-independent temperature sensor based on an interferometer taper fabricated with a CO2 laser

Autores
Martins, TJM; Marques, MB; Frazao, O;

Publicação
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS

Abstract
An optical fiber interferometer taper fabricated with a CO2 laser is proposed for strain and curvature-independent temperature measurement. Variations in temperature produce changes in the conditions of the interference between light traveling along the core and cladding and a linear behavior is verified for the relation between the wavelength of the resonant loss peak and temperature, yielding a sensitivity of 110 pm/degrees C for a range between 25 and 510 degrees C. Both the applied strain and curvature only promote significant changes in the transmitted power, leaving the wavelength of the resonant loss peak approximately constant and rendering this optical sensing device a good strain and curvature-independent temperature sensor. (c) 2016 Wiley Periodicals, Inc.

2016

Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips

Autores
Andre, RM; Warren Smith, SC; Becker, M; Dellith, J; Rothhardt, M; Zibaii, MI; Latifi, H; Marques, MB; Bartelt, H; Frazao, O;

Publicação
OPTICS EXPRESS

Abstract
Optical fiber micro-tips are promising devices for sensing applications in small volume and difficult to access locations, such as biological and biomedical settings. The tapered fiber tips are prepared by dynamic chemical etching, reducing the size from 125 mu m to just a few mu m. Focused ion beam milling is then used to create cavity structures on the tapered fiber tips. Two different Fabry-Perot micro-cavities have been prepared and characterized: a solid silica cavity created by milling two thin slots and a gap cavity. A third multi-cavity structure is fabricated by combining the concepts of solid silica cavity and gap cavity. This micro-tip structure is analyzed using a fast Fourier transform method to demultiplex the signals of each cavity. Simultaneous measurement of temperature and external refractive index is then demonstrated, presenting sensitivities of 15.8 pm/K and -1316 nm/RIU, respectively. (C) 2016 Optical Society of America

  • 75
  • 230