2016
Autores
Andre, RM; Marques, MJB; Frazao, O;
Publicação
PHOTOPTICS 2015
Abstract
Optical fiber sensors have evolved over the years in many different directions. One particular direction dictated by necessity is miniaturization and the creation of micro- and nano-optical fiber sensors. Many techniques now exist that allow the micro-structuring of optical fiber. One in particular is focused ion beam technology. This chapter aims to introduce this technique and present the latest work on the application of focused ion beam to optical fiber micromachining, more specifically, the fabrication of optical fiber microstructure sensors such as micro-gratings and micro-cavities.
2016
Autores
Silva, S; Magalhaes, R; Ana Perez Herrera, RA; Lopez Amo, M; Marques, MB; Frazao, O;
Publicação
PHOTONIC SENSORS
Abstract
The effect of an erbium-doped fiber amplifier (EDFA) placed inside the fiber ring of a cavity ring down (CRD) configuration is studied. The limitations and advantages of this configuration are discussed, and the study of the ring-down time as a function of the current applied and gain to the EDFA is also presented. In this case, the power fluctuations in the output signal are strongly dependent on the cavity ring-down time with the EDFA gain.
2016
Autores
Costa, L; Gresil, M; Frazao, O;
Publicação
SMART MATERIALS AND STRUCTURES
Abstract
A smart material using fibre Bragg gratings (FBGs) embedded into carbon fibre-reinforced polymer for simultaneous measurement of physical parameters was designed, tested, and validated. Two FBGs were embedded in different sections of the composite sample, one fully unidirectional and the other bidirectional, which produced different sensitivities for each FBG sensor. The composite structure was characterized for strain/temperature and curvature/temperature measurements. The experimental results were compared with and agreed with finite element simulations.
2016
Autores
Rego, G;
Publicação
JOURNAL OF SENSORS
Abstract
Long period fiber gratings produced by the electric arc technique have found an increasing interest by the scientific community due to their ease to fabricate, virtually enabling the inscription in any kind of fiber, low cost, and flexibility. In 2005 we have presented the first review on this subject. Since then, important achievements have been reached such as the identification of the mechanisms responsible for gratings formation, the type of symmetry, the conditions to increase fabrication reproducibility, and their inscription in the turning points with grating periods below 200 mu m. Several interesting applications in the sensing area, including those sensors working in reflection, have been demonstrated and others are expected, namely, related to the monitoring of extreme temperatures, cryogenic and high temperatures, and high sensitivity refractometric sensors resulting from combining arc-induced gratings in the turning points and the deposition of thin films in the transition region. Therefore, due to its pertinence, in this paper we review the main achievements obtained concerning arc-induced long period fiber gratings, with special focus on the past ten years.
2016
Autores
Del Villar, I; Socorro, AB; Corres, JM; Matias, IR; Luis Cruz, JL; Rego, G;
Publicação
IEEE PHOTONICS TECHNOLOGY LETTERS
Abstract
A reflection configuration setup for long-period fiber gratings is presented. It permits to obtain a unique band with attenuation double than that obtained in transmission configuration, which is interesting for applications where this value is reduced (e. g., the mode transition phenomenon). The method is based on the deposition of a silver mirror at the end of the optical fiber, which permits to absorb the power transmitted through cladding modes and to avoid the generation of interferometric bands. The method also solves the requirement of a precise cleave or to polish the end of the grating, a drawback present in other publications. The versatility of the setup has been proved by application of the cladding etching technique until the attenuation band corresponding with the first guided mode in the cladding is visualized in an optical spectrum analyzer. The experimental results are supported by the numerical data obtained with a method based on the exact calculation of core and cladding modes and the utilization of coupled mode theory.
2016
Autores
Esposito, A; Sakellaris, T; Limede, P; Costa, F; Cunha, LT; Dias, AG; Lencart, J; Sarmento, S; Rosa, CC;
Publicação
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS
Abstract
Purpose: To study the impact of shielding elements in the proximity of Intra-Operative Radiation Therapy (IORT) irradiation fields, and to generate graphical and quantitative information to assist radiation oncologists in the design of optimal shielding during pelvic and abdominal IORT. Method: An IORT system was modeled with BEAMnrc and EGS++ Monte Carlo codes. The model was validated in reference conditions by gamma index analysis against an experimental data set of different beam energies, applicator diameters, and bevel angles. The reliability of the IORT model was further tested considering shielding layers inserted in the radiation beam. Further simulations were performed introducing a bone-like layer embedded in the water phantom. The dose distributions were calculated as 3D dose maps. Results: The analysis of the resulting 2D dose maps parallel to the clinical axis shows that the bevel angle of the applicator and its position relative to the shielding have a major influence on the dose distribution. When insufficient shielding is used, a hotspot nearby the shield appears near the surface. At greater depths, lateral scatter limits the dose reduction attainable with shielding, although the presence of bone-like structures in the phantom reduces the impact of this effect. Conclusions: Dose distributions in shielded IORT procedures are affected by distinct contributions when considering the regions near the shielding and deeper in tissue: insufficient shielding may lead to residual dose and hotspots, and the scattering effects may enlarge the beam in depth. These effects must be carefully considered when planning an IORT treatment with shielding.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.