Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HumanISE

2026

Agent-Based Simulation of Forest Fire Spread with NetLogo

Autores
Ricardo Pires; Pedro Torres; Nuno A. Valente; E. J. Solteiro Pires; Arsénio Reis; P. B. de Moura Oliveira; João Barroso;

Publicação
Lecture notes in computer science

Abstract

2026

A Software Platform for an Intelligent Mobility Ecosystem

Autores
Reis, AMD; Paulino, A; Pinto, T; Barroso, JMP;

Publicação
Lecture Notes in Networks and Systems

Abstract
Software ecosystems have emerged as a paradigm to structure software products, communities and business models, in a form inspired by the natural ecosystems. Mobility solutions are also evolving from individual vehicles to soft mobility services based on electric vehicles. This paper aims to address the creation of a software platform to support an ecosystem of mobility solutions—the Intelligent Mobility Ecosystem, based on connected electric vehicles. It follows the paradigm of software ecosystems, in which a technological platform provides the functionalities needed to create solutions within the ecosystem. The work being carried out is part of the A-Mover project, which aims to develop a connected electric motorcycle and electronic services to support driving and use of the vehicle in individual and business contexts. The aim is to develop a set of functionalities around the vehicle to create specific mobility solutions. The concept of a software ecosystem is reviewed below and the proposed architecture for the software platform that will support the ecosystem is described. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.

2026

Software Testing Education and Industry Needs - Report from the ENACTEST EU Project

Autores
Saadatmand, M; Khan, A; Marín, B; Paiva, CR; Asch, NV; Moran, G; Cammaerts, F; Snoeck, M; Mendes, A;

Publicação
Lecture Notes in Computer Science

Abstract
The evolving landscape of software development demands that software testers continuously adapt to new tools, practices, and acquire new skills. This study investigates software testing competency needs in industry, identifies knowledge gaps in current testing education, and highlights competencies and gaps not addressed in academic literature. This is done by conducting two focus group sessions and interviews with professionals across diverse domains, including railway industry, healthcare, and software consulting and performing a curated small-scale scoping review. The study instrument, co-designed by members of the ENACTEST project consortium, was developed collaboratively and refined through multiple iterations to ensure comprehensive coverage of industry needs and educational gaps. In particular, by performing a thematic qualitative analysis, we report our findings and observations regarding: professional training methods, challenges in offering training in industry, different ways of evaluating the quality of training, identified knowledge gaps with respect to academic education and industry needs, future needs and trends in testing education, and knowledge transfer methods within companies. Finally, the scoping review results confirm knowledge gaps in areas such as AI testing, security testing and soft skills. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.

2026

Evidence-Based Activism and Knowledge Co-production: A Case Study of Online Communities on Therapeutic Cannabis

Autores
Rangel Teixeira A.; Teixeira Lopes C.;

Publicação
Lecture Notes in Networks and Systems

Abstract
This study examines the role of online health communities in Brazil dedicated to cannabis treatments for chronic diseases as platforms for evidence-based activism. Using a mixed-methods approach, the research combines qualitative analysis with computational techniques, including Latent Dirichlet Allocation (LDA) topic modeling, to analyze six online groups from WhatsApp and Facebook. Key themes emerging from the analysis include treatment per pathology, treatment effects, access barriers, peer support, and advocacy efforts. The findings reveal how these communities act as epistemic networks, where patients and caregivers co-produce knowledge by sharing personal experiences and engaging in dialogue with healthcare professionals. This study highlights how online health communities transform experience sharing into structured evidence, enabling collective action to address barriers such as limited access to cannabis-based treatments. It underscores the potential of digital platforms to empower patients, foster collaboration with healthcare professionals, and influence health governance.

2026

Enhancing Knowledge Access in Online Health Communities: A Chatbot Prototype for Cannabis Treatment Support

Autores
Rangel Teixeira, A; Teixeira Lopes, C;

Publicação
Lecture Notes in Networks and Systems

Abstract
Online health communities enable patients and caregivers to share experiences, seek advice, and collaboratively generate knowledge about treatments and condition. However, accessing relevant information often proves challenging due to platform limitations like insufficient search functionalities. A previous study identified key topics discussed in Brazilian online health groups centered on cannabis treatments for chronic diseases. Building on these findings, this study introduces a proof-of-concept chatbot designed to enhance access to the collective knowledge within these communities. The chatbot prototype, built using Google Dialogflow, was tailored to provide contextually relevant, accurate, and user-friendly responses. A user study involving 38 participants evaluated its performance, showing high user satisfaction, task completion rates, and trust in the information provided. The results highlight the chatbot’s potential enhance knowledge accessibility, promote patient engagement, and support evidence-based activism by organizing and disseminating community-generated content effectively. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.

2026

Comparing and extending satisfiability solution methods for the resource-constrained project scheduling problem

Autores
Coelho, J; Vanhoucke, M;

Publicação
COMPUTERS & OPERATIONS RESEARCH

Abstract
This paper solves the resource-constrained project scheduling problem (RCPSP) with a satisfiability problem (SAT) solver. This paper builds further on various existing SAT models for this well-known project scheduling problem and extends them with two methods to satisfy the resource constraints. Specifically, we use the wellknown minimal forbidden sets and compare them with the so-called covers that are traditionally used in SAT implementations. Moreover, we also implement an existing binary decision trees approach under various settings and extend the model with networks with adders, so far never used for solving the RCPSP, to guarantee that resource constraints are satisfied. The algorithms are tested under different settings on a set of 13,413 project instances with diverse network and resource structures, and the experiments demonstrate that a combination of these approaches help in finding better solutions within a reasonable time. Moreover, 393 new lower bounds, 62 new upper bounds, and 290 optimally solved instances (including 18 from the PSPLIB) have been discovered, which, to the best of our knowledge, had not been found before. The strong performance of the new algorithm motivated additional experiments, and the preliminary results suggest several promising directions for future research.

  • 2
  • 690