Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HumanISE

2019

A Review of the Main Machine Learning Methods for Predicting Residential Energy Consumption

Autores
Gonzalez-Briones, A; Hernandez, G; Pinto, T; Vale, Z; Corchado, JM;

Publicação
2019 16th International Conference on the European Energy Market (EEM)

Abstract

2019

Strategic participation in competitive electricity markets: Internal versus sectorial data analysis

Autores
Pinto, T; Falcao Reis, F;

Publicação
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
Current approaches for risk management in energy market participation mostly refer to portfolio optimization for long-term planning, and stochastic approaches to deal with uncertainties related to renewable energy generation and market prices variation. Risk assessment and management as integrated part of actual market negotiation strategies is lacking from the current literature. This paper addresses this gap by proposing a novel model for decision support of players' strategic participation in electricity market negotiations, which considers risk management as a core component of the decision-making process. The proposed approach addresses the adaptation of players' behaviour according to the participation risk, by combining the two most commonly used approaches of forecasting in a company's scope: the internal data analysis, and the external, or sectorial, data analysis. The internal data analysis considers the evaluation of the company's evolution in terms of market power and profitability, while the sectorial analysis addresses the assessment of the competing entities in the market sector using a K-Means-based clustering approach. By balancing these two components, the proposed model enables a dynamic adaptation to the market context, using as reference the expected prices from competitor players, and the market price prediction by means of Artificial Neural Networks (ANN). Results under realistic electricity market simulations using real data from the Iberian electricity market operator show that the proposed approach is able to outperform most state-of-the-art market participation strategies, reaching a higher accumulated profit, by adapting players' actions according to the participation risk.

2019

Stochastic interval-based optimal offering model for residential energy management systems by household owners

Autores
Gazafroudi, AS; Soares, J; Ghazvini, MAF; Pinto, T; Vale, Z; Corchado, JM;

Publicação
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS

Abstract
This paper proposes an optimal bidding strategy for autonomous residential energy management systems. This strategy enables the system to manage its domestic energy production and consumption autonomously, and trade energy with the local market through a novel hybrid interval-stochastic optimization method. This work poses a residential energy management problem which consists of two stages: day-ahead and real-time. The uncertainty in electricity price and PV power generation is modeled by interval-based and stochastic scenarios in the day-ahead and real-time transactions between the smart home and local electricity market. Moreover, the implementation of a battery included to provide energy flexibility in the residential system. In this paper, the smart home acts as a price-taker agent in the local market, and it submits its optimal offering and bidding curves to the local market based on the uncertainties of the system. Finally, the performance of the proposed residential energy management system is evaluated according to the impacts of interval optimistic and flexibility coefficients, optimal bidding strategy, and uncertainty modeling. The evaluation has shown that the proposed optimal offering model is effective in making the home system robust and achieves optimal energy transaction. Thus, the results prove that the proposed optimal offering model for the domestic energy management system is more robust than its non-optimal offering model. Moreover, battery flexibility has a positive effect on the system's total expected profit. With regarding to the bidding strategy, it is not able to impact the smart home's behavior (as a consumer or producer) in the day-ahead local electricity market.

2019

Context aware Q-Learning-based model for decision support in the negotiation of energy contracts

Autores
Rodriguez-Fernandez, J; Pinto, T; Silva, F; Praça, I; Vale, Z; Corchado, J;

Publicação
International Journal of Electrical Power & Energy Systems

Abstract

2019

UCB1 Based Reinforcement Learning Model for Adaptive Energy Management in Buildings

Autores
Andrade, R; Pinto, T; Praca, I; Vale, Z;

Publicação
DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE

Abstract
This paper proposes a reinforcement learning model for intelligent energy management in buildings, using a UCB1 based approach. Energy management in buildings has become a critical task in recent years, due to the incentives to the increase of energy efficiency and renewable energy sources penetration. Managing the energy consumption, generation and storage in this domain, becomes, however, an arduous task, due to the large uncertainty of the different resources, adjacent to the dynamic characteristics of this environment. In this scope, reinforcement learning is a promising solution to provide adaptiveness to the energy management methods, by learning with the on-going changes in the environment. The model proposed in this paper aims at supporting decisions on the best actions to take in each moment, regarding buildings energy management. A UCB1 based algorithm is applied, and the results are compared to those of an EXP3 approach and a simple reinforcement learning algorithm. Results show that the proposed approach is able to achieve a higher quality of results, by reaching a higher rate of successful actions identification, when compared to the other considered reference approaches.

2019

Fair Remuneration of Energy Consumption Flexibility Using Shapley Value

Autores
Faia, R; Pinto, T; Vale, Z;

Publicação
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2019, PT I

Abstract
This paper proposes a new methodology for fair remuneration of consumers participation in demand response events. With the increasing penetration of renewable energy sources with a high variability; the flexibility from the consumers' side becomes a crucial asset in power and energy systems. However, determining how to effectively remunerate consumers flexibility in a fair way is a challenging task. Current models tend to apply over-simplistic and non-realistic approaches which do not incentivize the participation of the required players. This paper proposes a novel methodology to remunerate consumers flexibility, in a fair way. The proposed model considers different aggregators, which manage the demand response requests within their coalition. After player provide their flexibility, the remuneration is calculated based on the flexibility amount provided by the players, the previous participation in demand response programs, the localization of the players, the type of consumer, the effort put in the provided flexibility amount, and the contribution to the stability of the coalition structure using the Shapley value. Results show that by assigning different weights to the distinct factors that compose the calculation formulation, players remuneration can be adapted to the needs and goals of both the players and the aggregators.

  • 211
  • 589