Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Publicações

Publicações por HumanISE

2025

A Pattern Language for Engineering Software for the Cloud

Autores
Sousa, TB; Ferreira, HS; Correia, FF;

Publicação
Transactions on Pattern Languages of Programming V

Abstract
Software businesses are continuously increasing their presence in the cloud. While cloud computing is not a new research topic, designing software for the cloud is still challenging, requiring engineers to invest in research to become proficient at working with it. Design patterns can be used to facilitate cloud adoption, as they provide valuable design knowledge and implementation guidelines for recurrent engineering problems. This work introduces a pattern language for designing software for the cloud. We believe developers can significantly reduce their R&D time by adopting these patterns to bootstrap their cloud architecture. The language comprises 10 patterns, organized into four categories: Automated Infrastructure Management, Orchestration and Supervision, Monitoring, and Discovery and Communication. © The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature 2025.

2025

Unified concepts: a review and proposal for virtual reality terminology

Autores
Gonçalves, G; Peixoto, B; Miguel, M; Bessa, M;

Publicação
VIRTUAL REALITY

Abstract
Throughout the Virtual Reality (VR) literature, we find different terms to define the same concepts as well as the same terms addressing different concepts. This issue can easily cause misinterpretations and difficulty in the analysis of papers from different authors. This work addresses this terminology confusion through a detailed analysis of current key concepts, how they have been employed, comparing them to other concepts, and proposing adaptations to their definitions to reduce conceptual overlap while preserving the original terms. In this work, we reviewed widely used terms in VR: Fidelity, Realism, Immersion, Presence, and Coherence. We also identified and discussed derivative terms, such as Place Illusion, Plausibility Illusion, Sensorimotor Contingencies, Multisensory, Virtual Content, Objective and Subjective Realism, and Objective and Subjective Internal Coherence. We proposed how these distinct concepts can be separated, merged, and linked, providing a clearer terminology for future use and discussing the implications of this terminology.

2025

Layer-based management of collaborative interior design in extended reality

Autores
Pintani, D; Caputo, A; Mendes, D; Giachetti, A;

Publicação
BEHAVIOUR & INFORMATION TECHNOLOGY

Abstract
We present CIDER, a novel framework for the collaborative editing of 3D augmented scenes. The framework allows multiple users to manipulate the virtual elements added to the real environment independently and without unexpected changes, comparing the different editing proposals and finalising a collaborative result. CIDER leverages the use of 'layers' encapsulating the state of the environment. Private layers can be edited independently by the different subjects, and a global one can be collaboratively updated with 'commit' operations. In this paper, we describe in detail the system architecture and the implementation as a prototype for the HoloLens 2 headsets, as well as the motivations behind the interaction design. The system has been validated with a user study on a realistic interior design task. The study not only evaluated the general usability but also compared two different approaches for the management of the atomic commit: forced (single-phase) and voting (requiring consensus), analyzing the effects of this choice on collaborative behaviour. According to the users' comments, we performed improvements to the interface and further tested their effectiveness.

2025

Advancing XR Education: Towards a Multimodal Human-Machine Interaction Course for Doctoral Students in Computer Science

Autores
Silva, S; Marques, B; Mendes, D; Rodrigues, R;

Publicação
EUROPEAN ASSOCIATION FOR COMPUTER GRAPHICS 46TH ANNUAL CONFERENCE, EUROGRAPHICS 2025, EDUCATION PAPERS

Abstract
Nowadays, eXtended Reality (XR) has matured to the point where it seamlessly integrates various input and output modalities, enhancing the way users interact with digital environments. From traditional controllers and hand tracking to voice commands, eye tracking, and even biometric sensors, XR systems now offer more natural interactions. Similarly, output modalities have expanded beyond visual displays to include haptic feedback, spatial audio, and others, enriching the overall user experience. In this vein, as the field of XR becomes increasingly multimodal, the education process must also evolve to reflect these advancements. There is a growing need to incorporate additional modalities into the curriculum, helping students understand their relevance and practical applications. By exposing students to a diverse range of interaction techniques, they can better assess which modalities are most suitable for different contexts, enabling them to design more effective and human-centered solutions. This work describes an Advanced Human-Machine Interaction (HMI) course aimed at Doctoral Students in Computer Science. The primary objective is to provide students with the necessary knowledge in HMI by enabling them to articulate the fundamental concepts of the field, recognize and analyze the role of human factors, identify modern interaction methods and technologies, apply HCD principles to interactive system design and development, and implement appropriate methods for assessing interaction experiences across advanced HMI topics. In this vein, the course structure, the range of topics covered, assessment strategies, as well as the hardware and infrastructure employed are presented. Additionally, it highlights mini-projects, including flexibility for students to integrate their projects, fostering personalized and project-driven learning. The discussion reflects on the challenges inherent in keeping pace with this rapidly evolving field and emphasizes the importance of adapting to emerging trends. Finally, the paper outlines future directions and potential enhancements for the course.

2025

Engaging the public in scientific research to enhance digital twins of the ocean and their practical applications

Autores
Ceccaroni, L; Pearlman, J; Angel, D; Dreo, J; Edelist, D; Freitas, C; Ganchev, T; Ipektsidis, C; Kruniawan, F; Laudy, C; Markova, V; Mlandu, DN; Paredes, H; Oliveira, MA; Simpson, P; Venus, V; Wahyudi, F; Parkinson, S;

Publicação
OCEANS 2025 BREST

Abstract
Integrating citizen science with digital twin technology represents a significant development in oceanographic research and marine management. This paper examines how the Iliad project has successfully developed a comprehensive suite of digital twins of the ocean (DTOs) that leverage citizen science contributions to enhance data coverage, improve modelling accuracy, and foster public engagement with marine ecosystems. Through innovative technological solutions, including semantic interoperability frameworks, mobile applications, knowledge graphs, and gamification approaches, the project demonstrates the reciprocal benefits between citizen scientists, scientific research and digital twin ecosystems. The developments presented in this work illustrate how engaging the public in scientific research not only broadens the data foundation for digital twins but also creates pathways for citizens to gain valuable insights from these sophisticated digital representations of ocean environments.

2025

Coastal Crete: A Digital Twin of the Ocean for Oil Spill Identification and Forecasting

Autores
Metheniti, V; Parasyris, A; Fazzini, N; Outmani, S; Correia, M; Goddard, J; Alexandrakis, G; Kozyrakis, GV; Vettorello, L; Keeble, S; Oliveira, MA; Quarta, ML; Kampanis, N;

Publicação
OCEANS 2025 BREST

Abstract
Developed within the Iliad Digital Twin of the Ocean (DTO) project, Coastal Crete provides advanced marine forecasting for oil spill detection and response. The system integrates satellite data, in-situ observations, and machine learning to predict oil spill trajectories and minimize environmental impacts. Using a multi-model approach, it combines WRF-DA, NEMO, and WAVEWATCH III models for high-resolution forecasts. Making use of Sentinel-1 SAR imagery, a deep learning approach was developed for near-real-time oil spill detection. The methodology is based on a U-net Neural Network, which is compared with the statistical methodology based on pythons' SNAPpy library. The operational forecasting system employs MEDSLIK-II for oil spill transport modeling and visualization via the GeoMachine platform, ensuring rapid decision-making for marine safety and environmental protection.

  • 25
  • 678