2019
Autores
Faia, R; Pinto, T; Vale, Z; Corchado, JM;
Publicação
International Conference on the European Energy Market, EEM
Abstract
The necessity of end-user engagement in power systems have become a reality in recent times. One of the solutions to this engagement is the creation of local energy markets. The distribution systems operators are compelled to investigate and optimize their asset investment cost in reinforcement of grids by introducing smart grid functionalities in order to avoid investments. The congestion management is the one of the most promising strategies to deal with the network issues. This paper presents a local electricity market or flexibility negotiation as a strategy in order to help the distribution system operator in congestion management. The local market is performed considering an asymmetric action model and is coordinated by an aggregator. A case study is presented considering a simulation that uses a low voltage network with 17 buses, which includes 9 consumers and 3 prosumers, all domestic users. Results show that using the proposed market model, the network congestion is avoided by taking advantage from the trading of consumers flexibility. © 2019 IEEE.
2019
Autores
Pinto, T; Vale, Z;
Publicação
International Conference on the European Energy Market, EEM
Abstract
The evolution of electricity markets towards local energy trading models, including peer-To-peer transactions, is bringing by multiple challenges for the involved players. In particular, small consumers, prosumers and generators, with no experience on participating in competitive energy markets, are not prepared for facing such an environment. This paper addresses this problem by proposing a decision support solution for small players negotiations in local transactions. The collaborative reinforcement learning concept is applied to combine different learning processes and reached an enhanced final decision for players actions in bilateral negotiations. The reinforcement learning process is based on the application of the Q-Learning algorithm; and the continuous combination of the different learning results applies and compares several collaborative learning algorithms, namely BEST-Q, Average (AVE)-Q; Particle Swarm Optimization (PSO)-Q, and Weighted Strategy Sharing (WSS)-Q and uses a model to aggregate these results. Results show that the collaborative learning process enables players' to correctly identify the negotiation strategy to apply in each moment, context and against each opponent. © 2019 IEEE.
2019
Autores
Pinto, T; Vale, Z;
Publicação
PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE
Abstract
This paper presents the Adaptive Decision Support for Electricity Markets Negotiations (AiD-EM) system. AiD-EM is a multi-agent system that provides decision support to market players by incorporating multiple sub-(agent-based) systems, directed to the decision support of specific problems. These sub-systems make use of different artificial intelligence methodologies, such as machine learning and evolutionary computing, to enable players adaptation in the planning phase and in actual negotiations in auction-based markets and bilateral negotiations. AiD-EM demonstration is enabled by its connection to MASCEM (Multi-Agent Simulator of Competitive Electricity Markets).
2019
Autores
Jozi, A; Pinto, T; Praça, I; Vale, Z;
Publicação
Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018
Abstract
This paper presents a Support Vector Machine (SVM) based approach for energy consumption forecasting. The proposed approach includes the combination of both the historic log of past consumption data and the history of contextual information. By combining variables that influence the electrical energy consumption, such as the temperature, luminosity, seasonality, with the log of consumption data, it is possible for the proposed method by find patterns and correlations between the different sources of data and therefore improves the forecasting performance. A case study based on real data from a pilot microgrid located at the GECAD campus in the Polytechnic of Porto is presented. Data from the pilot buildings are used, and the results are compared to those achieved by several states of the art forecasting approaches. Results show that the proposed method can reach lower forecasting errors than the other considered methods. © 2018 IEEE.
2019
Autores
Jozi, A; Pinto, T; Marreiros, G; Vale, Z;
Publicação
2019 IEEE Milan PowerTech, PowerTech 2019
Abstract
The rising needs for increased energy efficiency and better use of renewable energy sources bring out the necessity for improved energy management and forecasting models. Electricity consumption, in particular, is subject to large variations due to the effect of multiple variables, such as the temperature, luminosity or humidity, and of course, consumers' habits. Current forecasting models are not able to deal adequately with the influence and correlation between the multiple involved variables. Hence, novel, adaptive forecasting models are needed. This paper presents a novel approach based on multiple artificial intelligence-based forecasting algorithms. The considered algorithms are artificial neural networks, support vector machines hybrid fuzzy inference systems, Wang and Mendel's fuzzy rule learning method and a genetic fuzzy system for fuzzy rule learning based on the MOGUL methodology. These algorithms are used to forecast the electricity consumption of a real office building, using multiple input variables and consumption disaggregation. © 2019 IEEE.
2019
Autores
Nascimento, J; Pinto, T; Vale, Z;
Publicação
2019 IEEE Milan PowerTech, PowerTech 2019
Abstract
Electricity markets are complex environments with very dynamic characteristics. The large-scale penetration of renewable energy sources has brought an increased uncertainty to generation, which is consequently, reflected in electricity market prices. In this way, novel advanced forecasting methods that are able to predict electricity market prices taking into account the new variables that influence prices variation are required. This paper proposes a new model for day-ahead electricity market prices forecasting based on the application of an artificial neural network. The main novelty of this paper relates to the pre-processing phase, in which the relevant data referring to the different variables that have a direct influence on market prices such as generation, temperature, consumption, among others, is analysed. The association between these variables is performed using spearman correlation, from which results the identification of which data has a larger influence on the market prices variation. This pre-analysis is then used to adapt the training process of the artificial neural network, leading to improved forecasting results, by using the most relevant data in an appropriate way. © 2019 IEEE.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.